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1. INTRODUCTION

Among the diverse and ever-expanding array of approaches to
the electronic structure problem, the rise of approximate density
functional theory (DFT) as the method of choice for practical
calculations has been nothing short of meteoric.1,2 The stage for
this explosion of interest was set by three pivotal developments:
the establishment of the ground-state energy as a functional of
the density by the Hohenberg�Kohn theorems,3 the Kohn�
Sham reformulation of the problem in terms of self-consistent
field (SCF) equations with an approximate exchange-correlation
(XC) functional,4 and the invention of accurate approximations
to the XC functional itself.5�7

A key distinction of Kohn�Sham DFT, compared to ab initio
methods based on the Hartree�Fock (HF) reference wave
function, is the favorable scaling with system size that can be
obtained with many popular XC functionals. Thus, approximate
DFT accounts for much of the dynamical correlation energy
absent in HF theory, but at roughly the cost of a HF calculation.8

This superior balance of accuracy and low computational over-
head has spurred much of the growth in popularity of approx-
imate DFT over the last 2 decades. For traditional semilocal and
hybrid functionals, the computational cost of a single-point
energy calculation scales nominally as O(N3), where N is the
number of basis functions; a variety of techniques have since been
devised to obtain linear-scaling implementations of DFT for
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extended systems.9,10 Fast implementations of Kohn�Sham
DFT with Gaussian or plane-wave basis sets are available in
many modern electronic structure packages.

Thanks to its computational tractability, DFT has been at the
forefront of efforts to extend the reach of quantum chemistry
beyond the traditional realms of single-point energies and
geometries in the gas phase. DFT is now routinely employed
alongside spectroscopic and electrochemical analyses11,12 and is
invoked in the interpretation of novel organic and organometallic
reactivity.13,14 The favorable accuracy-to-cost ratio of approxi-
mate DFT for large systems has made it the method of choice for
quantum chemical studies of biomolecular systems15�17 and
has enabled classical molecular dynamics simulations on high-
dimensional Born�Oppenheimer potential energy surfaces
(PES).18,19 The introduction of a fictitious dynamics for the
orbitals in the Car�Parrinello approach20 further reduces com-
putational costs and has enabled density functional simulations
of bioactive and reactive species.21�23

The establishment of linear-response time-dependent DFT
(LR-TDDFT) as a viable, and in principle exact,24,25 formalism
for obtaining excited states fromDFT laid the groundwork for its
routine application to excited states in organic compounds26 and
transition-metal complexes.27 Paired with a classical force field
via QM/MM or ONIOM techniques, DFT and TDDFT have
gained traction for computational modeling of systems once
only accessible to classical simulation, such as enzymes28 and
chromophores strongly coupled to a solvent bath.29,30 DFT has
been enlisted to shed light on a dizzying variety of physical and
chemical applications, from structure and reactivity at
surfaces31 and screening of organic dyes32 to the characteriza-
tion of superconductors33 and materials simulations for art
preservation.34

In light of themany strengths and diverse applications of DFT,
it is easy to get the impression that the current stable of approxi-
mate XC functionals is adequate for all of chemistry. On the
contrary, the scope of applicability of traditional functionals is
limited by a number of shortcomings which in many cases lead to
qualitatively incorrect predictions of chemical structure and
reactivity. Traditional functionals suffer to varying degrees from
self-interaction error (SIE), which results in spurious delocaliza-
tion of the density with semilocal functionals but can also cause
the opposite (localization) error in some hybrids.35,36 These
errors are largely responsible for the failures of traditional
functionals for such fundamental properties as barrier heights
of chemical reactions,37 energies and structures of long-range
charge-separated states,38 and magnetic exchange couplings.39

Furthermore, noncovalent van der Waals interactions are gen-
erally either absent entirely or treated incompletely by traditional
functionals, although progress in addressing this problem has
been rapid in recent years.40�43

The shortcomings of traditional functionals naturally plague
TDDFT as well. The LR-TDDFT approach is better suited for
some types of excited states than for others. For instance, charge-
transfer excitation energies are often grossly underestimated by
LR-TDDFT with traditional functionals in the adiabatic
approximation.44,45 Conical intersections predicted by these
methods can be qualitatively incorrect.46,47 Some exotic excita-
tions such as double excitations also pose problems for LR-
TDDFT with traditional functionals and frequency-independent
XC kernels.46,48

Strategies for addressing these shortcomings can be roughly
grouped into three categories:

(1) Wait patiently for the arrival of the exact functional, or if
impatient, design better approximations to the exact
functional.

(2) Abandon the DFT approach in favor of systematically
improvable but computationally demanding ab initio
methods.

(3) Adapt calculations involving existing traditional func-
tionals to mitigate known shortcomings.

Of course, one can devise methods that fall between categories
1 and 2 by combining certain features of DFT and ab initio
techniques.49,50

This review explores one particular method, constrained DFT
(CDFT), that falls into the third category. The significance of
CDFT is partially ephemeral, as improvements in functional
approximations or ab initio techniques will eventually render
CDFT largely unnecessary (we hope). However, in the here and
now, CDFT has proven to be a valuable tool in the electronic
structure toolbox, and this review presents an overview of its role
in contemporary research. At a basic level, CDFT offers a partial
workaround to some of the detrimental effects of SIE discussed
above. However, CDFT also provides a direct route to diabatic
electronic states and, by extension, to charge transfer excited
states, using the basic machinery of the Kohn�Sham SCF
procedure. At a deeper level, these excited states lead naturally
to the construction of physicallymotivated effectiveHamiltonians
for a variety of problems. The diversity of applications presented
in this review does not reflect the breadth of CDFT so much as
the narrowness of commonly used density functionals: there are
many instances where CDFT is useful because there is a wide
range of problems for which a truly satisfactory XC functional
does not yet exist. Of course, solutions in each category enumerated
above are being actively pursued and refined, and there is good
reason to anticipate that solutions of all three types will extend
the reach of electronic structure theory—and ofDFT in particular—
to ever more complex problems.

The remainder of the review is structured as follows. Section 2
develops the theory and working equations of CDFT. In the two
subsequent sections, we illustrate applications of charge-con-
strained and spin-constrained CDFT states to problems in
electron transfer (section 3) and in the chemistry of low-lying
spin states (section 4), respectively. Section 5 addresses the
question of how to compute couplings between CDFT states,
with illustrative examples. The use of CDFT as a tool for
parametrizing model Hamiltonians is considered in section 6,
where we also discuss configuration-interaction (CI) expansions
of CDFT states for improved treatment of transition states and
conical intersections. Section 7 presents a handful of other
category 3 methods that cover the same applications as CDFT:
techniques that overcome SIE, or define diabatic states, or
describe low-lying excited states through modifications of the
Kohn�Sham SCF procedure. We conclude with our impression
of the role to be played by CDFT and related methods in the
future development and application of approximate DFT.

2. THEORY

In this section, we outline the working equations of CDFT and
describe how they can be solved efficiently. Development of
modern CDFT has benefitted greatly from the foresight of the
original presentation of CDFT, which fully anticipated all
manner of applications and formalisms.51 In modern molecular
usage, the theory of CDFT has been refined so that constraints
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are typically phrased in terms of the charge and spin on arbitrary
molecular fragments, which are defined in terms of an atomic
charge prescription.38,52�55 This portrayal allows for multiple
constrained fragments, analytical gradients, and efficient deter-
mination of the self-consistent constraint potential. In this
section we introduce the general theory with emphasis on the
formulation in terms of populations. We close the section with a
few illustrations of best practices in using constraints to solve
chemical problems.

2.1. Original CDFT Equations
The first presentation of a constrained DFT formalism is due

to Dederichs et al.51 and proceeds as follows. Suppose we seek
the ground electronic state of a system subject to the constraint
that there are N electrons in a volume Ω. One can accomplish
this by supplementing the traditional DFT energy functional,
E[F(r)], with a Lagrange multiplier:

EðNÞ ¼ min
F

max
V

E½FðrÞ� þ V
Z
Ω
FðrÞ d3r �N

� �� �
ð1Þ

Theadditionof a singleLagrangemultiplier termV(
R
ΩF(r) d3r�N)

is sufficient to effect a constrained optimization that yields the
lowest-energy state with exactly N electrons in the volume Ω.
This would clearly be useful, for example, in looking at the localiza-
tion of charge around an impurity. Continuing along these lines,
one can easily come up with other interesting constraint formula-
tions.51 One could constrain local d (or f) charge variation in
transition (or rare-earth) metals

EðNdÞ ¼ min
F

max
Vd

E½FðrÞ� þ Vd

Z
FdðrÞ d3r�Nd

� �� �
ð2Þ

or the (net) magnetization

EðMÞ ¼ min
F

max
H

E½FðrÞ��
þH

Z
Ω
mðrÞ d3r �M

� �
� ½mðrÞ � FαðrÞ � FβðrÞ�

ð3Þ
One could go even further and note that the magnetization in a
given system need not have a uniform orientation throughout, so
that one could partition the system into magnetization domains
with different axes of magnetization. In this case, the magnetiza-
tion on each domain would become an independent parameter,
with the energy E(MB1,...,MBN) being a function of the constrained
parameters. All of the constraints above can be cast in a unified
notation:52

W ½F,V ;N� � E½F� þ V ∑
σ

Z
wσðrÞ FσðrÞ d3r �N

 !
ð4Þ

EðNÞ ¼ min
F

max
V

W ½F,V ;N� ð5Þ
Here, one introduces a (spin-dependent) weight function, wσ(r),
that defines the property of interest. For example, to match eq 1,
wα(r) = wβ(r) would be the characteristic function of Ω. To
match eq 3, wα(r) = �wβ(r) would again be the characteristic
function ofΩ. In this way, we think of the various constraints as
specific manifestations of a single unified formalism.

These core equations have been widely used for determining
theU parameter in LDA+U, Anderson, andHubbardmodels,56�71

frequently in combination with the Hund’s rule exchange param-
eter J.72�86 A closely related fixed spin moment (FSM) class of
methods, which will not be covered in the present review,
originated in tandem with the original CDFT work of Dederichs
et al.87�89 Related use of CDFT for producing constrained
magnetic configurations has been rather widespread,90�105 and
the ability to fix different spin orientations at distinct sites allows
for ab initio spin dynamics106 with extension to relativistic spin
dynamics.107 A survey of the results based upon CDFT finds that
virial and Hellmann�Feynman theorems have been given for
CDFT,108 and the theory has been generalized for application to
the inverse Kohn�Sham problem.109 CDFT has found use
examining charge localization and fluctuation in the d density
of bulk iron,110 studying localized excitons on the surface of
GaAs(110),111 and constraining core orbital occupations to
obtain core excitation energies.112 Combining Janak’s theorem
and its integrated version the Slater formula with CDFT yields an
efficient method for determining the charge on quantum dots,113

and using CDFT to constrain orbitals to a fixed atomic form
provides a projection operator for use in self-interaction correc-
tion (SIC) calculations;114 the CDFT equations have been
reformulated for use with DFTB+ tight-binding models.115

With this slew of varied applications, the theory of constraining
properties of DFT states has proven quite versatile, being
applied to study a wide variety of phenomena. In recent years, it
has seen broad use constraining the charge and spin on mole-
cular fragments, which will be of particular importance for this
review.

2.2. Constrained Observables
There is a great deal of flexibility available for constraining the

ground-state density in eq 4, since in an unrestricted KS DFT
framework an arbitrary constraint may be applied to the inte-
grated population of each spin, over any number of arbitrary
regions of space, subject to an arbitrary weighting scheme. In
practice, this degree of flexibility is simply overwhelming and
requires some way to streamline the choice of appropriate
constraints. In this spirit, real-space atomic charge schemes have
driven much of the modern work with CDFT: they are flexible
enough to define a variety of states in accord with chemical
intuition but at the same time compact enough that the number
of reasonable constraints is not too large.

First, it is important to note that a variety of commonly used
prescriptions for computing the charge on atom A can be cast in
the form

NA �
Z

wAðrÞ FðrÞ d3r ð6Þ

Thus, constraining the charge or spin using one of these
population prescriptions is just a special case of eq 4. The easiest
to understand is probably the Voronoi method,116 which parti-
tions space up into cellsΩI consisting of all points closest to atom
I. The number of electrons on atom A is then

NA �
Z
ΩA

FðrÞ d3r ð7Þ

which is obviously a special case of eq 1. The Becke population
scheme is similar:117 here one defines a weight function, wA

Becke,
that is nearly unity inside the Voronoi cell, nearly zero outside,
and smoothly connects the two limits. The number of electrons
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on atom A is then

NA �
Z

wBecke
A ðrÞ FðrÞ d3r ð8Þ

In a completely different fashion, the Hirshfeld (or Stockholder)
partitioning can also be written in terms of atomic weight func-
tions.118 In the Hirshfeld scheme, one constructs a promolecule
density, ~F(r), that is just the sum of (usually spherically averaged)
atomic densities, FA(r). One then defines an atomic weight
function and number of electrons respectively by

wHirshfeld
A ðrÞ � FAðrÞ

~FðrÞ NA �
Z

wHirshfeld
A ðrÞ FðrÞ d3r ð9Þ

Similar constructions apply to the variations on this theme—
including Hirshfeld-I119 and iterated Stockholder120—with mild
adjustments to the definitions ofwA. It is also in principle possible
to phrase more sophisticated schemes—such as partition
theory121�123 and Bader’s atoms-in-molecules approach124—
in terms of a weight function wA, although to our knowledge
these connections have never been made in the context of
CDFT. Finally, there are charge prescriptions (including the
popular Mulliken,125 L€owdin,126 and NBO127 schemes) that
cannot be written in terms of the density. In these cases, the
charge is defined by partitioning the one-particle density matrix
(1PDM), which technically goes outside the scope of con-
strained density functional theory. However, in practice, it is a
simple matter to apply constraints to the 1PDM within the
same formalism,52,53 and thus, when one constrains L€owdin or
Mulliken populations, it is still colloquially referred to as CDFT.

With a prescription for atomic charges in hand, one can easily
build up a weight,wF, for the charge on a fragment F, consisting of
any group of atoms within a molecule or solid. The charge on the
fragment is just the sum of the atomic charges, so that

NF � ∑
I ∈ F

NI ¼ ∑
I ∈ F

Z
wIðrÞ FðrÞ d3r ¼

Z
∑
I ∈ F

wIðrÞ FðrÞ d3r

�
Z

wFðrÞ FðrÞ d3r wFðrÞ � ∑
I ∈ F

wIðrÞ
" #

ð10Þ

We can thus constrain the number of electrons on any fragment
by adding the Lagrangian term

VF

Z
wFðrÞ FðrÞ d3r �NF

� �
ð11Þ

to the energy expression. HereNF is the total number of electrons
on the fragment, though for practical calculations the nuclear
charge is subtracted off and only the net number of electrons on
the fragment (�qFtNF� ZF) need be specified as input to the
calculation.

For magnetic systems, we would also like to be able to
constrain the local spin using population operators. That is, we
would like the equivalent of eq 3 for subsets of the entire system.
To accomplish this, we note that the number of electrons of spin
σ (σ = α, β) on F is just

Nσ
F �

Z
wFðrÞ FσðrÞ d3r ð12Þ

The net spin polarization (i.e., the localMS value) is (Nα�Nβ)/2,
where the factor of 1/2 reflects the fact that electrons are spin-

1/2
particles. We can thus constrain the net magnetization of any

fragment by adding the Lagrangian term

HF

Z
wFðrÞðFαðrÞ � FβðrÞÞ d3r �MF

� �
ð13Þ

MF is then the net number of spin-up electrons on the fragment,
which is the same as twice the MS value.

Finally, we can apply any number of spin and charge con-
straints by adding a number of such terms:

W ½F,VF ,HF0 ;NF ,MF0 � � E½F�
þ ∑

F
VF

Z
wFðrÞ FðrÞ d3r �NF

� �

þ ∑
F0

HF0

Z
wF0 ðrÞðFαðrÞ � FβðrÞÞ d3r�MF0

� �
ð14Þ

EðNF ,MF0 Þ ¼ min
F

max
VF ,HF0

W ½F,VF ,HF0 ;NF ,MF0 � ð15Þ
The actual form ofwF (and thus the constraint) will depend on

the choice of target populations, as described above. But it is a
trivial matter to write the equations in a manner that is
independent of the population, and we will maintain this level
of abstraction in what follows.

2.3. Choosing a Constraint
Even if we restrict our attention only to charge and spin

constraints, in any given application one still has several choices
to make about how an appropriate constraint should be defined.
What atomic population should be used?Which atoms should be
included in the fragment? Does the basis set matter? For themost
part, the answers to these questions must be determined on a
case-by-case basis either by trial and error or using chemical
intuition. However, the literature does contain a number of
empirically determined guidelines that can be helpful in practice:
• Mulliken populations are not reliable. One abiding rule is
that Mulliken populations are unrealistic in CDFT. For exam-
ple, in Figure 1, Mulliken populations spuriously predict that
separating charge in dinitrogen to obtain the N+N� config-
uration should only require a fraction of an electronvolt,

Figure 1. The energy and constraint potential as a function of charge
separation in N2 with different charge prescriptions. Squares: Becke
population; triangles: L€owdin population; dots: Mulliken population.
Calculations performed using B3LYP in a 6-31G* basis set. Reproduced
with permission from ref 53. Copyright 2006 American Chemical
Society.
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whereas all other prescriptions predict energies on the order
of 5�10 eV. This failure can be linked to the ability of
Mulliken populations to become negative in some regions of
space.128

• When diffuse functions are involved, density-based pre-
scriptions are more stable. Here again, the observation is
tied to a known weakness of an atomic population scheme:
AO-based schemes (like L€owdin, Mulliken, or NBO) tend
to get confused when diffuse functions are added.129 In the
worst cases, this fault keeps L€owdin�CDFT energies and
properties from converging as the size of the basis set is
increased. Such a case is illustrated in Table 1, which
presents the electronic coupling (discussed in section 5)
between benzene and chlorine at two different separations
for a variety of basis sets. Clearly the L€owdin result shows an
unreasonably large increase as the basis size increases, while
the density-based Becke prescription shows fast conver-
gence. Real-space population schemes such as the Becke
weighting scheme and Hirshfeld partitioning correct for the
broad spread of diffuse basis functions, giving good results
for CDFT.53,130

• Larger fragments give more consistent results. This con-
clusion has mainly been drawn from the application of
CDFT to predict exchange couplings in magnetic organo-
metallic compounds, where there is a wealth of experimental
data to compare to.39 The qualitative picture is that all excess
spin resides on the metal atoms. However, in practice,
constraining the net spin of the metal atoms alone using
any of the standard schemes gives unreasonable exchange
couplings. The most reliable results are obtained if the
fragments are made as large as possible; if there are two
metals (A and B), then every atom in the molecule is
assigned either to fragment A or fragment B, even if there
is thought to be no net magnetization on that atom.
Likewise, for charge transfer, making the fragments large
helps stabilize the excess charge, e.g., constraining a metal
center and its ligands (instead of just the metal) or not
leaving an unconstrained “bridge” in a fully conjugated
aromatic charge-transfer system. Making the constrained
region too small can cause the constraint to be artificially too
strong; a chargedmetal center really will delocalize charge to
its ligands (Figure 2), and a charge-transfer state in a con-
jugated system will delocalize the electron and hole as much
as possible to stabilize itself. By making the CDFT con-
straint region as large as possible, theminimum perturbation
needed to enforce the constraint can be applied, with the
system naturally seeking the correct level of localization. It is
important to emphasize that adding “spectator” atoms to a
fragment does not necessarily place any charge or spin on

the spectator; adding the atom to the fragment merely
means that the variational CDFT optimization can place
additional charge or spin on that atom, not that it will. For
example, in Figure 2, when half of the bridge is added to each
fragment, not all of the bridge carbons will have extra charge.

• When possible, constrain charge and spin together.
Suppose you were interested in charge transfer between
C60 and C70 (i.e., C60

+
3 3 3C70

�). You could generate this
state in one of two ways: either constrain only the charge
(e.g., qC60

= +1) or the charge and spin (e.g., qC60
= +1 and

MC60
= 1). In many cases these two routes will give nearly

identical answers (as long as the calculations are spin-
unrestricted). However, in the cases where they differ
significantly, it can often be the case that constraining the
charge leads to a state that still has significant overlap with
the ground state. This phenomenon is known as “ground
state collapse” and generally leads to erroneous results for
energetics.131 Thus, to be on the safe side, it seems best to
constrain both charge and spin rather than just charge alone.

• There can be many equivalent ways of specifying the
same state. Returning to the C60

+
3 3 3C70

� example, be-
cause the overall charge on the system is fixed, specifying
qC60

= +1 or qC70
=�1 would obtain exactly the same answer

Table 1. Diabatic Coupling (in mhartree) for Electron
Transfer from Benzene to Cla

d = 0.604 Å d = 1.208 Å

basis set L€owdin Becke L€owdin Becke

6-31G 21.3 58.2 30.1 65.9

6-31G(d) 21.0 56.9 29.9 64.8

6-31+G(d) 39.6 46.7 46.1 53.9

VDZ-ANO 95.3 48.8 94.0 56.1
aData from ref 54.

Figure 2. The energy behavior of [Na(NH3)3]
+H2N(CH2)nNH2-

[Na(NH3)3]
� with the constraint applied to just the metal atoms (•);

the Na(NH3)3 groups (+); themetal, ammonias, and the amine group of
the bridge (�); splitting the complex in two down the middle of the
bridge (*); or with a promolecule-modified constraint applied to the
Na(NH3)3 groups (0). Energy differences are measured with respect to
the ground-state DFT energy for each system and plotted as a function
of the number of carbons in the alkyl amine. Geometries are constructed
with bond lengths and angles corresponding to the optimized geometry
of the eight-carbon system. The metal-only constraint is comically
overstrong (note the broken y-axis), while expanding the constraint
region to include the ligands or the ligands plus bridge leads to physically
plausible results. The constraint in (*) is a weaker constraint than all the
other curves except the promolecule-corrected constraint on the sodium
and ammonias; this is because when the system is literally divided in two,
only one constraint region is needed—the other partitionings require
that one region is constrained to +1 charge and the other to�1, with an
implicit constraint that the bridge is neutral.
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in CDFT. Alternatively, requiring that qC60
� qC70

= +2
would also give the same result. These observations are
general: it is always mathematically equivalent to describe
the system with constraint NA on A and with constraint
NB t N � NA on a B defined as the set complement of A.
The ability to add and subtract constraints in this manner is
reminiscent of the elementary row operations of linear
algebra, allowing for different presentations of equivalent
physical constraints. The charge difference constraint illu-
strated above has been used rather extensively53,130 because,
in cases where the constraint regions do not cover all of
space, the charge difference constraint is insensitive to
fluctuations in the overall charge.

• When donor and acceptor are very close to one another,
CDFT may fail. When atoms are bound together in mole-
cules, there is no perfect prescription for assigning atomic
charges: at some point any method for dividing delocalized
charge becomes arbitrary. It is particularly challenging when
atoms are very close to each other, e.g. the two nitrogen
atoms in N2, illustrated in Figure 1. Here, even when two
reasonable charge prescriptions (L€owdin and Becke) are
used, the energy of the N+N� state varies bymore than 3 eV.
This is clearly an unacceptably large error for chemical
purposes and trying more population prescriptions will not
fix the problem. There is simply no unambiguous way to
apportion the charge in N2 to the different nitrogen atoms.
In section 2.5 we will discuss how these problems can be
mitigated somewhat by using fragment densities, but they
cannot be entirely ignored.

Thus, while defining an appropriate constraint is not a trivial
task, in practice we at least have some empirical guidelines of
what to do and what not to do when we approach a new problem
with CDFT.

2.4. Implementation
A full implementation of CDFT needs to find the density that

obeys the specified charge/spin constraints at SCF convergence.
That is to say, it needs to solve for the stationary points of the
Lagrangian in eq 15. Ideally, we would like to solve these
equations with approximately the same computational cost as
a regular KS-DFT calculation. Toward that end, we rewrite
eq 15 as

EðNkÞ ¼ min
F

max
Vk

W ½F,Vk;Nk�

¼ min
F

max
Vk

E½F� þ ∑
k
Vk

Z
∑
σ

wσ
k ðrÞ FσðrÞ d3r �Nk

 !" #

ð16Þ
where the index k indexes charge and spin constraints: for
charges Vk t VF and wk

α = wk
β = wF, while for spins Vk t HF

and wk
α = �wk

β = wF. This notation obfuscates the meaning
somewhat, but makes the equations uniform. Recall that the DFT
energy expression is defined by

E½F� ¼ ∑
σ
∑
Nσ

i
ϕiσ

������ 1
2
∇2

�����ϕiσ
* +

þ
Z

vnðrÞ FðrÞ d3r þ J½F� þ Exc½Fα, Fβ� ð17Þ

where the terms on the right-hand side are, in order, the
electronic kinetic, electron�nuclear attraction, Coulomb, and

exchange-correlation energies. Requiring that eq 16 be stationary
with respect to variations of the orbitals, subject to their ortho-
normality, yields the equations

� 1
2
∇2 þ vnðrÞ þ

Z
Fðr0Þ
jr� r0j d

3r0
�

þ vσxcðrÞ þ ∑
k
Vkw

σ
k ðrÞ

!
ϕiσ ¼ Eiσϕiσ ð18Þ

with the Hermitian conjugate for ϕ*iσ. These equations are just
the standard Kohn�Sham equations with the addition of
some new potentials. These potentials are proportional to the
Lagrange multipliers, which illustrates the physical mechanism
by which CDFT controls charges and spins: it alters the potential
in such a way that the ground state in the new potential satisfies
the desired constraint. Another way to say it is that the excited
state of the unperturbed system can be approximated by the
ground state of the system in the presence of the constraining
potential. Thus, CDFT takes the fact that the KS approach is
exact for any potential and exploits it to obtain information about
nominally inaccessible excited states.

However, these constraint potentials are not yet fully specified—
though the wk are given as parameters, the Lagrange multipliers
Vk are only implicitly defined by the constraints on the fragment
charges and spins. These constraints become clear when we
attempt to make W stationary with respect to the Vi:

dW
dVk

¼ ∑
σ
∑
Nσ

i

δW
δϕ�iσ

∂ϕ�iσ
∂Vk

þ cc

 !
þ ∂W

∂Vk
ð19Þ

¼ ∑
σ

Z
wσ
k ðrÞ FσðrÞ d3r �Nk ð20Þ

¼ 0 ð21Þ
where the eigenconditionδW/δϕ*iσ= 0 has been used. Note that
only the constraint with index k remains after differentiation,
even when multiple constraints are imposed on the system, and
the stationary condition of the derivative being zero enforces the
desired charge/spin constraints.

The separate conditions of eqs 18 and 21 imply that Vk and F
must be determined self-consistently to makeW stationary. This
is somewhat daunting, as the Lagrangian optimization is typically
only a stationary condition—that is, it is not typically a pure
maximization or minimization. As a practical matter, it is much
more difficult to locate indefinite stationary points than maxima
or minima. For example, it is significantly harder to find a
transtition state (an indefinite stationary point) than an
equilibrium structure (a minimum). However, even though
the CDFT stationary point is not a maximum or a minimum, it
is easy to locate, because one can show that the desired
solution is a minimum with respect to F and a maximum with
respect to Vk.

52,53 Thus, the stationary point can be solved for
via alternating between minimization along one coordinate
(the density) followed by maximization along the others (the
potentials).

To see this, note that for any fixed Vk, eqs 18 determine a
unique set of orbitals, ϕi[Vk]. These orbitals define a density
F[Vk], which can then be used as input toW. In this manner, one
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can think ofW as a function only of Vk:W(Vk). We can work out
the second derivatives of this function:53

∂
2W

∂Vk∂Vl
¼ ∑

σ
∑
Nσ

i

Z
wσ
k ðrÞ ϕ�iσðrÞ

δϕiσðrÞ
δ½Vlwσ

l ðr0Þ�
wσ
l ðr0Þ d3r d3r0 þ cc

ð22Þ

¼ ∑
σ
∑
Nσ

i

Z
wσ
k ðrÞ ϕ�iσðrÞ

� ∑
a 6¼i

ϕ�aσðr0Þ ϕiσðr0Þ
Eiσ � Eaσ

ϕaσðrÞ wσ
l ðr0Þ d3r d3r0 þ cc ð23Þ

¼ 2 ∑
σ
∑
Nσ

i
∑

a>Nσ

Æϕiσjwσ
k jϕaσæÆϕaσjwσ

l jϕiσæ
Eiσ � Eaσ

ð24Þ

where first-order perturbation theory is used in evaluating the
functional derivative δϕiσ(r)/δ[Vlwl

σ(r0)]. The index i only
covers the occupied orbitals of the constrained state, whereas
the index a need only cover the virtual orbitals, as the summand is
antisymmetric in i and a. This Hessian matrix is nonpositive
definite because53

∑
m

k, l
Vk

∂
2W

∂Vk∂Vl
Vl ¼ 2 ∑

σ
∑
Nσ

i
∑

a>Nσ

jÆϕiσj ∑
m

k¼ 1
Vkwσ

k jϕaσæj2

Eiσ � Eaσ
e 0

ð25Þ
This holds because the KS method chooses the lowest-energy
eigenstates as the occupied orbitals, so for every occupied orbital i
and virtual orbital a, ɛiσe ɛaσ. Thus, the overall Hessian product
is nonpositive, as desired, giving a stationary point as a maximum.

Having worked out the second derivatives, we see two features
that simplify the CDFT optimization procedure. First, the
condensed version of W is globally concave in the Vk, giving a
unique fixed point that satisfies all the applied constraints. Thus,
there can be no confusion about local versus global maxima.
Second, since both the first and second derivatives ofW(Vk) are
easily computed, rapidly converging algorithms such asNewton’s
method can be used to locate its stationary point. Convergence to
the constrained SCF minimum can thus be achieved by means of
a nested-loop algorithm with outer SCF loop and inner con-
straint loop. The outer loop closely resembles a normal DFT
calculation, with SCF iterations being performed to optimize the
orbitals. Within each step of the outer loop, a second loop of
microiterations is performed to determine the Lagrange multi-
pliers Vk that make the density satisfy the charge and spin con-
straints (eqs 10 and 12). Because the Vk contribute to the Fock
matrix, the orbitals must be redetermined by diagonalization of
the Fock matrix at each microiteration step. Fortunately, the Vk
contribution to the Fockmatrix is easy to calculate and a full build
with exchange and correlation contributions is not necessary,
making the microiterations relatively cheap for atom-centered
basis sets. After the first few iterations of the outer loop, it is
common for the inner loop to converge after only two or three
microiterations. Essentially all available SCF codes use a con-
vergence accelerator, such as direct inversion in the iterative
subspace (DIIS).132,133 Since CDFT introduces an extra layer of
microiterations at each SCF step, care is needed in incorporating
CDFT into existing SCF codes so as to not interfere with these
accelerators. DIIS keeps historical Fock matrices for several SCF

iterations, and extrapolates a new Fockmatrix from them in order
to generate MO coefficients for the next SCF iteration. Since the
CDFT microiterations add a constraint potential to the Fock
matrix to determine MO coefficients, but use the unconstrained
Fock matrix for energy determination, both unconstrained and
constrained Fock matrices must be retained. The extrapolation
coefficients determined from the constrained Fock matrices are
then applied to the unconstrained matrices to yield an initial
unconstrained Fock matrix for the next round of CDFT micro-
iterations.

It is important to note that at stationarity, the Lagrangian, W
(eq 16), is equal to the physical energy of the system, E (eq 17).
The energy in the presence of the constraining potentials Vkwk is
then a form of free energy,

F ¼ E þ VtotNtot þ VspinMspin ð26Þ
In accord with this free energy picture, we obtain the thermo-
dynamic relations

dEðNkÞ
dNk

¼ � Vk and
dFðVkÞ
dVk

¼ Nk ð27Þ

reflecting that E is a natural function of Nk but F is a natural
function of Vk. It also follows that d

2E/dNk
2 =�(d2W/dVk

2)�1,
so that the concavity ofW(Vk) implies the convexity of E(Nk), an
important physical condition.

In addition to energy derivatives with respect to the internal
parameters Vk and Nk, we may also wish to compute derivatives
of the energy with respect to external parameters such as nuclear
position. Such analytical gradients have been implemented for
CDFT, making possible ab initio molecular dynamics on charge-
constrained states and parametrizations of Marcus electron
transfer theory therefrom, as will be seen in section 3. Consider
the problem of computing the derivative of the electronic energy
(eq 17) with respect to the position of nucleus A. In addition to
obeying E[FCDFT] = W[FCDFT,VkCDFT,NCDFT] at convergence,
W has the additional property that it is variational with respect to
both F and the Vi (in contrast to E[FCDFT], which is not even a
stationary point of the energy), which allows the use of the
Hellmann�Feynman theorem, writing

∇AW ¼ ∇AE þ ∑
i
ViF∇Awi ð28Þ

The first term is the standard gradient for unconstrained calculations,
which includes theHellmann�Feynman force, Pulay force, and terms
from the change in DFT integration grid with nuclear displacement;
the second term represents the extra force due to the constraint
condition on the density. The form of this term is necessarily
dependent on the form of the population operator w used to define
the constraint; for the Becke population scheme, these terms have
been computed in ref 134. With a Mulliken or L€owdin treatment of
population, which depends on the AO overlap matrix, this term has a
more complicated form; ref 38 performs the calculation for the
L€owdin scheme. Oberhofer and Blumberger’s plane-wave CDFT
implementation using Hirshfeld’s population scheme has also
implemented analytical gradients; their expressions for the weight
constraint gradient is in Appendix B of ref 130.

Finally, we note that we have focused here on the implemen-
tation of CDFT in localized orbital codes, but the method can
equally well be implemented in plane-wave codes.130 The primary
difference is in the cost trade-off—whereas diagonalization of the
KS Hamiltonian is cheap in localized orbitals, it is expensive for
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plane-waves. Thus, the relative cost of the microiterations is
somewhat higher in a plane-wave-based scheme, but the SCF
iterations can be significantly faster, particularly for pure func-
tionals applied to condensed phase problems.

2.5. Promolecules
Molecular dynamics follows a system away from the ground-

state geometry, and similarly, molecular reactions and electronic
excited state dynamics sojourn far from the ground state. In such
situations, molecules and molecular fragments come in close
contact while they bounce around, jostle, relax, and react. CDFT
is designed to construct electronic states of fixed character at
arbitrary geometries, even those where fragments overlap, but
sometimes it does not perform as well as might be hoped in such
close-contact geometries. One of the sorest impediments to its
ability to do so is the choice of atomic population prescription. In
cases of close approach, the real-space constraint potentials must
distinguish between fragments in regions where the density is
nonzero, so that assignment of density in that transition region to
fragment “A” or fragment “B” is ambiguous, a clear weakness of
the available charge prescriptions. The simplest example that
shows this ambiguity is H2

+, with a single electron and two
protons. Formally, we can constrain the electron to lie only on
one proton (“A”), but when the two protons begin to approach
each other, any real-space-based atomic population scheme will
begin to assign some fraction of this electron to the second
nucleus (“B”), for any physically reasonable density correspond-
ing to a constrained H�H+ configuration. Thus, the formal
charge constraint putting a full electron on atomA is unattainable
with present charge prescriptions, and the numerical value of the
constraint must be adjusted to accommodate their failings.

This failure of formal charge/spin constraint values extends to
the case of arbitrary fragments, coming into play when con-
strained molecular fragments come in close approach, as in
nucleophilic substitution reactions; the promolecule formalism
was pioneered to allow CDFT to be used in precisely these types
of situations.135 The sequence of steps involved in the

promolecule formalism is a bit complex and probably best
understood using an example. Take the typical SN2 reaction:

ClCH3 þ F� T f½Cl�CH3�F��g T Cl� þ CH3F

for which the natural reactant and product configurations are
ClCH3(N = 0,S = 0) + F(N = 1,S = 0) and Cl(N = 1,S = 0) +
CH3F(N = 0,S = 0) respectively. These formal charge and spin
values are exactly valid at infinite fragment separation; however,
at small separation there will be overlap between the fragments,
and the reported charge and spin will deviate from their formal
values. The overlap is strongest at the reaction transition state,
and the formal charges and spins simply do not represent realistic
constraint values for any population scheme at that closest
approach. The promolecule treatment corrects for these errors
by modifying the formal integer charge (spin) constraints into
values that are appropriate for a given charge prescription. The
basic steps involved are illustrated in Figure 3.

The first step in the calculation is to break the system into the
appropriate fragments—e.g., F� and CH3Cl for the reactant
configuration—maintaining the internal geometry of each frag-
ment (Figure 3a). One then performs separate calculations on
each fragment with the relevant total charge and total spin
(Figure 3b). These converged fragment densities are the fragment
promolecule densities; they approximate what an F� or CH3Cl
density should look like. The fragment promolecule densities are
then arranged in the original molecular geometry and summed to
obtain the total promolecule density, ~F (Figure 3c). For the
example SN2 system in the reactant configuration, we obtain

~Fσr ðrÞ ¼ FσClCH3
ðrÞ þ FσF�ðrÞ ðσ ¼ α or βÞ ð29Þ

With this full promolecule density ~F(r), the actual constraint
values used for the final reactant CDFT calculation are

Ntot ¼
Z

wðrÞ½~Fαr ðrÞ þ ~Fβr ðrÞ� d3r ð30Þ

Mspin ¼
Z

wðrÞ½~Fαr ðrÞ � ~Fβr ðrÞ� d3r ð31Þ

as depicted in Figure 4. These modified constraint values reflect
the expectation that a molecule constrained to be in the “reactant

Figure 3. Construction of reactant and product promolecule densities
for [F 3 3 3CH3 3 3 3Cl]

�. (a) The system is divided into fragments, with
atoms being apportioned to the fragments corresponding to reactant
(product) and the internal fragment geometry held fixed at the transi-
tion-state values. (b) The ground-state density of the isolated reactant
(product) fragments is determined. (c) The fragment densities are
superimposed to form the reactant (product) promolecule density.
Reproduced with permission from ref 135. Copyright 2009 American
Institute of Physics.

Figure 4. Computation of reactant- and product-like states for
[F 3 3 3CH3 3 3 3Cl]

�. The total promolecule density is integrated against
the charge prescription functionw(r) of the reactant (product) fragment
to obtain target constraint values. CDFT calculations with these updated
constraints produce the final reactant and product states. Reproduced
with permission from Ref 135. Copyright American Institute of Physics.
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state” should,within the limits of the charge prescription in use, look as
much as possible like the superposition of the reactants brought
from infinite separation to the geometry in question. In many
cases, the correction from the promolecule density is small and can
safely be omitted, particularly when the constrained regions are on
different molecules (as for charge transfer in organic semiconduc-
tors, section 5.6) or widely separated (as for molecular sensors,
section 3.5). In other cases, though, the correction is essential, as
for the very small fragments illustrated in Figure 1, or for reaction
transition states that enter into CDFT-CI barrier height calcula-
tions (section 6.3). As the fragments come from being well-
separated into closer approach, the effect of the correction grows
smoothly, owing to the continuity of all functions involved. By the
time the reacting fragments reach the transition-state geometry,
the correction can be larger than half an electron!Nonetheless, the
constraining potentials continue to enforce a consistent physical
picture throughout the entire reaction and allow higher-level
methods to be built atop that picture.

2.6. Illustrations
In order to be concrete about how CDFT is used in practice,

we now review two of the early applications of CDFT that
opened the door to its vast utility: impurities in metals and long-
range charge-transfer systems.
2.6.1. Metal Impurities. In bulk systems, a localized hole can

be formed where the ejected electron does not localize to a
particular site, instead being absorbed into the band structure. In
such bulk systems, impurities tend to drive localization phenom-
ena, and in fact, the first published results using CDFT were for
cerium impurities in silver and palladium.51 Palladium and silver
are transition metals, whereas cerium is a rare earth; as such, the
most noticeable distinction is the presence of the cerium f
orbtials, which is where we focus our interest. The f orbitals of
rare earths are generally decoupled from the overall band
structure of the bulk, and thus, they are vital for these localization
phenomena. One therefore focuses on controlling the f popula-
tion of the impurity atom while leaving the overall band structure
unchanged (except for its local screening response). The energy
response to such a site population change, ΔE(ΔNf), measures
how a charged impurity affects the local environment of a bulk
system. In order to induce such a population change, a
constraining potential is applied; since the desired population
change is only in the f orbitals of the cerium impurity, the
functional form of eq 2 is appropriate. Applying a fixed extra
potential Vf to the f orbitals gives a constrained state with a
deviation in f population ΔNf and in energy ΔE(ΔNf), as
illustrated in Figure 5. The figure makes it clear that it is easier
to add or remove charge from cerium in silver than in
palladium—that is to say, cerium more easily traps electrons
in silver than in palladium. Further, while ΔE(ΔNf) is very
nearly symmetric for silver, it is noticeably asymmetric for
palladium, indicating that cerium more readily traps electrons
than holes in palladium.
Contemporary theoretical studies of cerium impurities postu-

lated the existence of two stationary solutions for the 4f wave
function, the canonical one and an additional one with a
maximum outside the 5sp shell;136,137 the existence of these
states can be probed with CDFT. Consider adding to the energy
a Lagrange multiplier term of the form

V
Z

jrj2Ff ðrÞ d3r� Ær2æ
Z

Ff ðrÞ d3r
� �

ð32Þ

where Ær2æ is the target value that reflects the “size” of the f
orbitals. When V is negative, the resulting potential will be
monotonically decreasing (for r > 0), repulsive for r2 < Ær2æ,
and attractive for r2 > Ær2æ, pushing electron density outward from
the nucleus. Now, given themodern scheme, we could apply both
the charge constraint and the size constraint to explore the 4f/5sp
transition. But in the original studies, only the size constraint was
applied, resulting in theΔE(Ær2æ) andNf(Ær2æ) curves in Figure 6.
Clearly, only a single minimum is found, suggesting that there is
only one solution, which corresponds to the 4f state being inside
the 5sp shell. Indeed, as Ær2æ is increased, Nf falls off sharply,
indicating that it is more favorable to promote f electrons to the
conduction band than have them extend past the 5sp shell.
Note that all of these early studies on impurities used the

approach of scanning over V in order to qualitatively study
charges and orbital sizes. At least in part, this is because the
inverse problem of solving for V given a target value of N is
more difficult to solve. More recently, it has become possible
(cf. section 2.4) to directly solve for the precise value of V
required to attain, for example, unit charge or unit spin transfer.
These technical advances have thus opened up the possibility of
studying long-range charge-transfer, where quantization of charge
allows CDFT to make quantitative predictions about excited states.

Figure 5. (a) The strength Vf of the constraint potential as a function of
the enforced number of f electrons on a cerium impurity in palladium
and silver (semirelativistic calculation). (b) The change in energy as a
function ofΔNf for the same systems. Reproduced with permission from
ref 51. Copyright 1984 American Physical Society.
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2.6.2. Long-Range Charge-Transfer Excited States. As a
representative application, consider the zincbacteriochlorin�
bacteriochlorin (ZnBC�BC) complex, an important model
system for how charge transfer (CT) states are formed and
used to ferry electrons in the photosynthetic process of
bacteria.45,138 In one of the more spectacular failures of LR-
TDDFT, commonly used functionals fail to yield reasonable
energies for these CT states, giving excitation energies that are
too small by >1 eV and unphysically flat as a function of
site�site separation. These limitations have motivated the
development of range-separated hybrid functionals capable of
describing long-range CT while maintaining a good description
of short-range bonding.139�143

When considering a more correct treatment of these CT
states, we note that the BC moieties are physically extended,
with some 24 heavy atoms each arranged in a plane. In the
biological system, ZnBC and zinc-free BC are combined in a
joint complex, and charge-transfer states between the halves of
the complex transfer electrons during photosynthesis. Under-
standing how these CT states behave at different geometries
can help illustrate the internal behavior of part of the incredibly
complex photosynthetic process. Because the BC moieties are
well-separated from each other, it is natural to assign unit charge
to each. Furthermore, at large separation, the interaction
between BCs should be dominated by the 1/R Coulomb
attraction between the opposing charges. To facilitate such
distance-dependent studies, a model system with an adjustable-
length flexible linker has been created,45 allowing for calcula-
tions ranging from 5.84 up to 9.0 Å separation. To perform
these calculations, though, the fragment regions must be
determined. The BC moiety contains a large number of
conjugated π bonds, and thus, an extra electron or hole would
be expected to delocalize throughout the whole construct. As
such, the constraint is applied to the entire (Zn)BC moiety, as
opposed to some smaller piece such as half of it, or just the zinc
in the ZnBC case. With constraints in hand, the energies of
ZnBC+BC� and ZnBC�BC+ are computed and plotted against
1/R, showing the expected linear behavior for both species
(Figure 7). The excitation energies for the shortest-linker
complex (rightmost point) agree nicely with previous reference

calculations45 (3.79 and 3.94 eV versus the accurate values of
3.75 and 3.91 eV, respectively), showing much better agree-
ment than the 1.32 and 1.46 eV excitation energies computed
from TDDFT.52

Having shown that CDFT charge-transfer states give the
correct 1/R scaling expected of electron�hole attraction, in
order to give a full certification of accuracy, it remains to show
that the asymptotic limit of this 1/R dependence is correct. The
infinite-separation limit E(∞) is easily obtained by extrapolat-
ing E(1/R) to 1/R = 0. At that limit, donor and acceptor are
completely isolated, so the full-system energy E(∞) should just
be the sum of the isolated energies, E(D+) + E(A�); Table 2
shows these quantities for three systems. In all three cases
the extrapolated energy and sum of noninteracting energies
agree to within 1 millihartree, a difference attributable to
errors in the point charge approximation at finite separation
and fitting errors. In order to get this agreement, unrestricted
KS calculations must be used for the constrained calculations
to be consistent with the isolated fragment calculations; re-
stricted KS calculations yield correct scaling but an incorrect
limit. With both correct scaling and the correct asymptotic
limit, CDFT is an excellent tool for studying long-range charge-
transfer states.
One can certainly wonder how it is that CDFT is able to

describe these states so well, even with semilocal functionals like
BLYP, whereas LR-TDDFT fails miserably. There are two
insights that illuminate this finding. The first is that, by nature,
LR-TDDFT is a linear response method, whereas CDFT in-
volves nonlinear response of the density (via the self-consistent
determination of V and F). Thus, whereas TD-BLYP, as a linear
response method, misses much of the electron�electron inter-
action, this interaction is recovered when higher order response

Figure 6. Energy change (left scale) and f occupation (right scale) as a
function of the second moment of the f charge density for cerium in
palladium (nonrelativistic calculation). Reproduced with permission
from ref 51. Copyright 1984 American Physical Society.

Figure 7. The charge-transfer state energies of ZnBC�BC as compared
to its ground-state energy at 5.84 Å separation. Lower line, Zn+BC�;
upper line, Zn�BC+. Reproduced with permission from ref 52. Copy-
right 2005 American Physical Society.

Table 2. Charge-Separated State Energies Extracted to
Infinite Separation and the Sum of Ionic Donor and Acceptor
Energies, in hartreea

D A E(D+) + E(A�) E(∞)

N2 N2 � 218.360 411 � 218.361 386

H2O F2 � 275.391 972 � 275.392 850

C2H4 C2F4 � 553.595 853 � 553.595 591
aData from ref 53.
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is included, as in CDFT. The second insight derives from the fact
that CDFT is, at the end of the day, a ground-state method. At
the asymptotic limit, CT states separate into eigenstates of the
separated fragments with appropriate charge and spin. For many
cases of physical interest, these separated states are the ground
states of the fragments. It is fairly awkward to describe these
charged ground states as excited states of the neutral system (as is
done in TDDFT), but it is quite natural to describe them as
ground states of a different potential (as is done in CDFT). Thus,
CDFT is in some sense complementary to TDDFT: the excited
states for which TDDFT works well (valence states) are in-
accessible to CDFT, while many of the excited states that are
challenging in TDDFT are naturally treated in CDFT.

2.7. Future Challenges
CDFT has been developed as a robust framework for treating

charge- and spin-constrained electronic states within the ground-
state KS DFT scheme, with computationally feasible implemen-
tations that benefit from multiple analytical relations. Early
applications revealed great reliability for long-range charge-
transfer states and gave insights to the behavior of impurities in
bulk systems; the following sections will continue on to describe
more recent applications of the framework as it has expanded
into other realms of application. Looking forward past these
existing applications, there remain open areas for expansion.
First, while analytic first derivatives of the CDFT energy with
respect to nuclear positions are widely available, analytical
Hessians have yet to be implemented. Though numerical Hes-
sians may be evaluated with the aid of parallel computers,
analytical Hessians also benefit from parallel computation and
are more efficiently generated. Such analytical Hessians would,
for example, allow for the prediction of IR spectra of charge
transfer excited states for larger systems than are currently
accessible. Along the lines of using CDFT to correct commonly
used functionals, the prospect of applying density constraints
within TDDFT is tantalizing. For example, applying constraints
on the charges of two fragments and maintaining those con-
straints through linear response would result in the prediction of
TDDFT excited states that involve no charge transfer between
the two states. That is to say, it would be an excitation spectrum
that contained only neutral valence excitations. As TDDFT is
typically quite good for valence excitations, this might be a good
tactic if one wants to “clean up” a TDDFT spectrum that has
been contaminated by unphysically low CT states. Finally, the
question of the best underlying population prescription for use in
CDFT is also open: though real-space schemes are preferred
(over orbital-based methods such as L€owdin), there are still any
number of such prescriptions available in the literature (e.g.,
Becke, Hirshfeld, Bader, partition theory, ...) Many of these have
not even been explored in the context of CDFT. Could one

population scheme significantly expand the applicability of
CDFT? Indeed, how can we quantify when one real-space
scheme is “better” than the others? Thus, while CDFT in its
present state is a useful tool for applications, there are still a
number of directions to be explored both in terms of the
fundamentals of the method (How do constraints interact with
the charge definition?) and extending its practical utility (e.g., by
implementing Hessians).

3. APPLICATION TO ELECTRON TRANSFER

3.1. Background: Marcus Theory
Electron transfer (ET) lies at the heart of chemical reactivity,

as captured by the “arrow-pushing” formalism in organic chem-
istry textbooks. Intermolecular ET reactions that proceed with-
out bond breaking or bond formation are among the simplest
chemical transformations, yet the kinetics of these reactions
remain difficult to predict from first principles. ET can also occur
within a molecule, from one functional group to another, as a
consequence of thermal or photoinduced excitation. The quest
for a quantitative understanding of ET kinetics has been ongoing
for well over 50 years and continues to gain practical significance
as demand for solar energy conversion accelerates.

The standard theoretical framework for ET reactions has been
established for quite some time and is referred to as Marcus
theory.144 Several existing reviews detail the physical founda-
tions,145�147 applications,146,148,149 and extensions147,150,151 of
Marcus theory, so we provide only a brief summary here. Marcus
theory is a classical transition state theory of ET that assumes that
the reactant and product electronic states are weakly coupled.
Furthermore, Marcus theory assumes that the molecule(s)
undergoing ET are surrounded by an environment that responds
linearly to the ET event (linear response approximation). In this
limit, the free energy profiles of the two ET states can be
represented by a pair of crossing parabolas with identical
curvature, as illustrated in Figure 8.

Two parameters suffice to characterize the relative displace-
ment and curvature of the reactant and product free energy
curves: the driving force�ΔG, which constitutes the free energy
difference between reactant and product states, and the reorga-
nization energy λ, which quantifies the free energy penalty
associated with forcing the reactant into an equilibrium config-
uration of the product or vice versa. The Marcus expression for
the ET rate is the classical transition-state theoretical rate
obtained from the free energy profiles in Figure 8,

kET ¼ 2π
p

jHabj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλkBT

p exp � ðλ þ ΔGÞ2
4λkBT

" #
ð33Þ

Here T is the temperature, kB is the Boltzmann constant, p is the
reduced Planck constant, and the pre-exponential factor is
expressed in terms of thermodynamic quantities plus an electro-
nic coupling term Hab, which will be considered in detail in
section 5. According to eq 33, the ET activation energy ΔG‡ is
given by

ΔG‡ ¼ ðλ þ ΔGÞ2
4λ

ð34Þ

ET reactions are classified according to the relative magnitudes
of�ΔG and λ. Reactions satisfying�ΔG < λ are said to occur in
the “normal” regime, while those in theMarcus “inverted” regime

Figure 8. Marcus parabolas depicting free energy as a function of an ET
reaction coordinate in different regimes. (a) The normal region,�ΔG <
λ. (b) The top region, �ΔG ≈ λ. (c) The inverted region, �ΔG > λ.
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satisfy�ΔG > λ. Representative free energy curves for these two
cases are shown in Figure 8a,c. In the intermediate “top” region of
Figure 8b, a negligible activation free energy barrier results in the
maximum ET rate for a given driving force. In the inverted
regime, theMarcus theory predicts a decrease of the ET rate with
increasing driving force; experimental evidence of Marcus in-
verted effects152 has reinforced the value of the theory.

Given the demonstrated utility of the Marcus model, methods
to predict Marcus ET parameters for real systems from first
principles have proliferated in recent years. These predictions are
challenging because they call for a diabatic representation of the
ET states, whereas conventional electronic structure methods
produce adiabatic states. In the adiabatic representation, one of
the ET states is often an excited state. It is possible to estimate the
driving force in the adiabatic representation from the energy
difference of the ground and excited states at their respective
equilibrium geometries, but this calculation requires optimiza-
tion of the excited state geometry, which hampers its applicability
to larger systems.

The reorganization energy λ presents further challenges to
computation. It is fundamentally a nonequilibrium property
because it requires the energy of one ET state at the equilibrium
geometry of the other state.153 The reorganization energy is often
partitioned into two contributions: an inner-sphere reorganiza-
tion energy associated with distortion of the molecular geometry
and an outer-sphere reorganization energy reflecting the rear-
rangement of solvent to accommodate the new charge distribu-
tion. The outer-sphere reorganization energy often comprises
the dominant contribution to the total λ,154,155 so a proper
description of solvent effects is crucial.

Still, significant progress has been made toward prediction of
reorganization energies. A straightforward and popular approach
is the four-point method,156 which treats reorganization of the
donor to its radical cation and of the acceptor to its radical anion
independently. This approach can be used with high-level
electronic structure methods but does not account for interac-
tions between donor and acceptor, which cannot be neglected for
intramolecular ET. Alternatively, one can employ a diabatization
scheme157 to compute energies for the two ET states at either
state’s equilibrium geometry. Adiabatic-to-diabatic transforma-
tions such as the generalized Mulliken-Hush (GMH) approach158

can be used for this purpose, or one can directly construct
approximate diabats using tools such as empirical valence-bond
methods,159 frozen DFT,160 or (as discussed below) CDFT.

In this section we highlight applications of CDFT to the
construction of diabatic ET states and to the computation of
driving forces and reorganization energies. Special attention is
given to techniques for incorporating solvent effects and to the
pairing of CDFT with molecular dynamics (MD) simulations to
obtain ET free energy profiles without direct invocation of the
Marcus model.

3.2. Diabatic ET States from CDFT
3.2.1. Choosing Suitable Density Constraints for ET.

CDFT can be used to construct diabatic states for any ET
reaction whose electron donor and acceptor moieties are known
in advance. Example systems include metal ions undergoing self-
exchange in solution,130,161 charge-transfer states in extended
molecules,53,162 and donor�acceptor interfaces in organic
semiconductors.163 In ET systems with a neutral ground state,
the frontier orbitals of the ground and CT states are of the
general form illustrated in Figure 9. In the ground state, both the

donor and acceptor have closed shells. The transfer of one
electron from the donor HOMO to the acceptor LUMO defines
the CT state. Considered as isolated species, the donor and
acceptor are both charged radicals after ET; hence, the CT state
is also commonly dubbed a radical ion-pair state.
To obtain diabatic ET states from CDFT, one first defines

which regions of the system are to be associated with the donor
or with the acceptor. Then, net charges (or a net charge
difference) are assigned to the donor and acceptor in accordance
with the character of the target state, as outlined in section 2. For
example, to define the CT diabatic state in Figure 9, one may
constrain the donor (acceptor) to have one fewer (more)
electron than it would possess as an isolated, neutral system. A
diabatic representation of the neutral ground state is obtained by
constraining the net charges on the donor and acceptor to zero.
In practice, the constrained neutral state usually differs negligibly
from the adiabatic ground state, so a ground state calculation can
often suffice for this purpose.

Figure 9. Frontier orbitals for the CT excited state (a) and the ground
state (b) involved in ET reactions. Adapted with permission from ref 53.
Copyright 2006 American Chemical Society.
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As discussed in section 2, constraint regions are typically
defined in terms of atomic populations such as the Mulliken,125

L€owdin,126 Becke,117 or Hirshfeld118 populations. However,
simpler constraining potentials have also proven useful in some
related methods for studying charge transfer. One important
example is providedby the perturbed ground state (PGS)method,164

a constrained-state approach to ET in which perturbing poten-
tials are used to explore how the strength of the perturbation
affects the splitting between the two lowest-energy states. The
diabatic energies and the electronic coupling can both be
deduced from the PGS procedure, although the requirement to
scan over the constraining potential makes the method more
computationally expensive than CDFT. In these studies, sphe-
rical well potentials centered on the donor and acceptor and
possessing opposite signs provided states of sufficiently diabatic
character to extract diabatic energies and couplings for hole
transfer in He2+ and in a simplified model of a peptide bond.164

3.2.2. Illustrations. The diabatic ET states of a diverse and
growing number of systems have been determined from CDFT
calculations. Long-rangeCT-state energies ofmodel systems such as
the N2 dimer and stretched ethylene�tetrafluoroethylene obtained
from CDFTmatch the sum of the energies of the isolated radical
ions.53 This correspondence confirms the expectation that the
CDFT approach to CT states mitigates the effects of self-
interaction error. The proper 1/R depenence of the CT state
energy on donor�acceptor distance R was also verified in the
zincbacteriochlorin�bacteriochlorin complex,52 where TDDFT
obtains an incorrect scaling.45

To understand the structural consequences of ET, it is
instructive to consider the dependence of the diabatic energies
on nuclear configuration. CDFT was used to construct diabatic
states for proton-coupled ET across a hydrogen-bonded bridge
in a model bipyridine�dinitrobenzene complex53 (Figure 10a).
In this study, the position of a proton along the hydrogen-bonded
bridge was varied from one side of the bridge to the other, and the
diabatic energies were computed as a function of this proton
coordinate. A +0.3 au point charge was affixed to the bipyridine of
the donor to model the effect of a Ru center in the real system. As
shown in Figure 10b, two minima were found along the reaction
coordinate, corresponding to localization of electron density on
either the donor or the acceptor. The predicted reaction barrier
height, 7 kcal/mol, is significantly lower than the 25 kcal/mol
barrier height predicted by a multiconfiguration SCF (MCSCF)
calculation.165 The MCSCF calculation, however, is essentially
free of the dynamical correlation effects captured by any DFT
approach. Thus, much of the difference between barrier heights
predicted by MCSCF and CDFT can be attributed to dynamical
correlation. Kinetics studies of this donor�acceptor complex166

return aΔG in good agreement with CDFT results for the model
complex.
ET inmixed-valence compounds represents another challenge

for DFT, particularly in compounds defined as Class II within the
Robin�Day classification scheme.167 The Class II compounds
possess two charge centers with different formal oxidation states,
and ET takes place intermittently between the two charge
centers. The two formal oxidation state pairs are diabatic states
and are thus amenable to a CDFT treatment. A recent example
is provided by the characterization of the mixed-valence
Fe(II)�Fe(III) complex {Cp*(dppe)Fe(CtC�)}2(1,3-C6H4)
(Figure 11c), which was reported from experiments to exhibit
charge-localized states on the Au(111) surface168 [dppe =1,2-
bis(diphenylphosphino)ethane].

The availability of analytic gradients for CDFT states enables fast
geometry optimizations for diabatic states,38 a prerequisite for
computation of the inner-sphere reorganization energy. The opti-
mized geometry of the charge-localized states in a mixed-valence
compound can differ significantly from that of the delocalized state
provided by a conventional DFT calculation, as illustrated by the
mixed-valence tetrathiafulvalene�diquinone anion [Q�TTF�Q]�

(Figure 12). Full geometry optimizations on the charge-constrained
Q��TTF�Q, with the excess electron confined to one side of the
molecule, produce C�C bond lengths differing by several pm
relative to the unconstrainedDFTgeometry of the [Q�TTF�Q]�

anion, shown in Table 3. For clarity, we emphasize that geometry
optimization of the constrained state is not constrained in the
conventional sense of applying constraints to chosen nuclear
degrees of freedom; the only constraint in the optimization is the
density constraint self-consistently applied within the electronic
Hamiltonian at each step of the optimization.
In the charge-localized state, the geometry of the quinone bearing

the excess electron resembles the bare quinone anion, whereas the
geometry of the neutral quinone side resembles that of the neutral
quinone molecule. From these calculations, the inner-sphere re-
organization energy of [Q�TTF�Q]� is obtained as

λi ¼ EðQ ��TTF�Q jQ�TTF�Q �Þ
� EðQ�TTF�Q �jQ�TTF�Q �Þ

Figure 10. (a)Model hydrogen-bonded DA system for proton-coupled
ET. (b) Energy profiles of D�A and DA� states along a linear proton
transfer coordinate. Adapted with permission from ref 53. Copyright
2006 American Chemical Society.
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where E(A|B) represents the energy of state A at the optimized
geometry of state B. Here, the computed λi = 13 kcal/mol corres-
ponds to slightlymore than half of the estimated total reorganization
energy λ = 22 kcal/mol of [Q�TTF�Q]� in a 10:1 ethyl acetate/
tert-butyl alcohol solution.169

In polar environments, the outer-sphere reorganization energy
is often the dominant contribution to the total reorganization
energy. The ET driving force can also be significantly modified by
the environment, especially in polar solvents, which preferentially
stabilize CT states. Next we consider methods to account for the
influence of the environment on CDFT energies and structures.

3.3. Incorporating Solvent Effects
The role of the environment inmodulating ET properties is an

essential feature of Marcus theory.144 Figure 13 provides a
schematic for nonadiabatic ET in polar media. Solvent polariza-
tion, on average, acts to stabilize an electron localized on an elec-
tron donor. However, thermal fluctuations of the solvent can
bring the two diabatic states into a transient energetic degeneracy,

at which point the electron can hop to the acceptor with
probability proportional to the square of the electronic coupling.

At first glance, the mechanism illustrated in Figure 13 appears
well-suited for a dielectric continuummodel of the solvent.170,171

In the continuum models, the solute is placed in a cavity carved

Figure 11. (a) Experimental and (b) simulated STM images of a mixed
valence diiron complex, along with (c) the ground-state geometry of the
Fe(II)�Fe(III) mixed-valence compound. The difference in brightness
between the two sides of the compound in the STM images is indicative
of charge localization. Reproduced with permission from ref 168.
Copyright 2010 American Chemical Society.

Figure 12. The mixed-valence Q�TTF�Q anion. The quinone ring-
numbering shown here is used to describe bond lengths in Table 3.

Table 3. Geometries of theQuinone Groups inQ�TTF�Q�

and Q�TTF�Q, Obtained by Conventional (DFT) and
Constrained (C) Calculations, with Geometries of an Isolated
Neutral (Q) and Anionic (Q�) 1,4-Benzoquinone Moleculea

Q�TTF�Q�

DFT C-neutral C-reduced Q�TTF�Q Q Q�

O�C1 1.246 1.226 1.268 1.226 1.227 1.273

C1�C2 1.464 1.481 1.450 1.481 1.487 1.452

C2�C3 1.370 1.359 1.378 1.359 1.345 1.375

C1�C6 1.470 1.491 1.450 1.489 1.487 1.452

C5�C6 1.358 1.342 1.376 1.343 1.345 1.375

α 168.5 171.4 160.2 166.7
aData reproduced from ref 38.

Figure 13. Schematic of solvent reorganization accompanying ET.
Adapted with permission from ref 157. Copyright 2010 Annual
Reviews.
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out of a continuous dielectric medium characterized by its
dielectric constant ɛ, and the solvation free energy is obtained
by solving the Poisson�Boltzmann equation for the surface
charge on the cavity induced by the dielectric response of the
solvent to the solute electron density. These continuum models
typically make the approximation that the solvent can be
characterized by a frequency-independent dielectric constant ɛ.
This approximation is often quite good for ground-state solva-
tion energies, especially in solvents lacking significant none-
lectrostatic interactions, e.g., hydrogen bonding or π-stacking.

However, the approximation of a single dielectric constant
breaks down immediately after electronic excitation of the solute,
especially for CT states. The underlying reason is that vertically
excited states are out of equilibrium: the solvent electron density
equilibrates with the CT density of the solute, but the larger mass
of the solvent nuclei causes orientational polarization to take
place on a slower time scale. Immediately after electronic excita-
tion, the solvent nuclear degrees of freedom remain in equilib-
rium with the ground state of the solute. Rather than introduce a
fully frequency-dependent dielectric ɛ(ω) tomodel this behavior,
it is convenient and practical to separate the solvent polariza-
tion response into fast and slow components, in accordance with
solvent electronic and nuclear relaxation.172,173 Electronic re-
sponse is characterized by the optical dielectric constant ɛ∞,
which is the square of the refractive index of the dielectric, while
nuclear response is characterized by the zero-frequency dielectric
constant ɛ0.

The ability of CDFT + implicit solvent to provide ET driving
forces and reorganization energies was assessed for the small
donor�acceptor dyad formanilide�anthraquinone (FAAQ) in
DMSO solution38 using the COSMO continuum solvent model.174

The predicted driving force �ΔG = 2.31 eV is in reasonable
agreement with electrochemical studies which provide estimates
�ΔG = 2.24�2.68 eV.175,176 These electrochemical estimates
of �ΔG probe the one-electron reduced and one-electron
oxidized states of FAAQ rather than directly probing the
zwitterionic CT state; unfortunately, a direct assessment of the
driving force through an experimental CT state energy is
unavailable due to the state’s small oscillator strength.

The total reorganization energy of FAAQ obtained from
CDFT calculations with COSMO solvent is λ = 0.6 eV, which
amounts to less than half of the experimentally inferred λ =
1.4�1.8 eV. The experimental estimate of λ was obtained within
the linear response approximation by comparison of CT state
lifetimes of FAAQ and its ferrocenated derivative FcFAAQ.175,176

There are several viable reasons for the discrepancy between the
CDFT/COSMO and experimental λ, including an inadequate
theoretical characterization of the nonequilibrium state and the
lack of configurational sampling of low-energy solute conformers. In
the following section, we will consider how explicit solvent models
can be used to address these and other shortcomings.

3.4. Molecular Dynamics and Free Energy Simulations
By including an explicit description of the solvent in the

calculation of ET parameters, one no longer needs to rely on
assumptions such as linear response to attain a tractable model of
solvent effects; instead, one may sample the configuration space
of the system through Monte Carlo or molecular dynamics
(MD) simulations to obtain a statistical description of the ET
energetics. However, the introduction of so many solvent
degrees of freedom can obscure the notion of an ET reaction
coordinate describing collective solvent motions.

An elegant solution to this problem is to choose the energy gap
ΔE between the diabatic states as a reaction coordinate;177 this
choice of reaction coordinate condenses all important solvent
motions onto a single quantity in which the free energy is
quadratic in the limit of linear response.178 Using the energy
gap as the ET reaction coordinate, a standard protocol for the
simulation of ET free energies in explicit solvent has
emerged.177,179�181 The procedure is illustrated in Figure 14:
first one runs long MD trajectories on one or both diabatic states
and samples ΔE along these trajectories (Figure 14a). Then a
probability distribution for the energy gap, P(ΔE) is obtained by
fitting the sampled energy gaps to a predetermined distribution,
most often a Gaussian (Figure 14b). Finally, free energy profiles
along the energy gap reaction coordinate are computed through
the relation G(ΔE) = �kBT ln P(ΔE).

CDFT has recently become a popular choice for obtaining
diabatic states for ET simulations in explicit solvent. Marzari and
co-workers studied self-exchange in the aqueous Fe2+�Fe3+

dimer using a penalty function approach to CDFT on the full

Figure 14. Simulation of ET free energy profiles in explicit solvent: (a)
tracing the energy gap along MD trajectories, (b) fitting the energy gap
statistics to construct a probability distribution for the energy gap, and
(c) producing ET free energy curves from the temperature-scaled
logarithm of the probability distributions. Reproduced with permission
from ref 130. Copyright 2009 American Institute of Physics.
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aqueous system.161 In this study, ET parameters were first
obtained with the PBE functional in the limit of infinite separa-
tion of the two ions, where a constrained approach is not
necessary. Instead, it is possible to run MD on just one of the
ions with the total system charge fixed at (3� r), where r ∈ [0,1]
serves as an umbrella sampling parameter to obtain equilibrium
configurations of the system in oxidation states between +2 and
+3. For each pair of sampled configurations, the energy gap was
obtained by calculating the energy of one configuration at a total
charge +2 and of the other configuration at a total charge +3, and
taking the difference. These gaps were fit to a Gaussian with
coefficient of determination R2 = 0.9996 and a reorganization
energy λ = 1.77 eV, compared to an experimental value of 2.1 eV
at a separation distance of 5.5 Å.

Computational access to the reorganization energy at realiz-
able finite distances is hindered by delocalization of density over
both ions, a consequence of the self-interaction error. To over-
come the problem, Marzari and co-workers introduced a penalty
functional, akin to CDFT, which was designed to steer the largest
eigenvalue of the minority-spin occupation matrix of the Fe2+

and Fe3+ ions toward the value they attain for isolated
[Fe(H2O)6]

2+ and [Fe(H2O)6]
3+, respectively.161 Ab initio

MD trajectories for Fe2+�Fe3+ in a periodic box of 62 water
molecules were obtained with the added penalty functional for a
set of fixed charge states Fe(2+r)+�Fe(3�r)+. The energy gap
probability distribution constructed from this data yield the free
energy surfaces shown in Figure 15. The resulting reorganization
energy λ = 2.0 eV is only 0.1 eV below the experimental value.
Excellent statistics were achieved using only three values for the
umbrella sampling parameter, corresponding to equilibrium
configurations of the reactant (r = 0) and product (r = 1), plus
transition-state configurations (r = 0.5).

In addition to the penalty functional approach, the CDFT
formalism as outlined in section 2 has also been applied to MD
simulation of ET free energies in explicit solvent.130 Oberhofer
and Blumberger implemented CDFT energies and forces with a
plane-wave basis and with constraints defined in terms of
Hirshfeld weights.118 They assessed the CDFT-MD approach
on a standard model system for ET simulations, the Ru2+�Ru3+

self-exchange reaction in water. Various classical MD approaches

have obtained a range of values for the reorganization energy in
this system, λ = 1.60�1.87 eV, depending on the particular water
model employed.182 CDFT-MD simulations on the aqueous
diruthenium system were run with a charge difference constraint
N = 1 imposed between the two ruthenium hexahydrates. The
evolution of the energy gap obtained from such a trajectory is
depicted in Figure 14a. Because the system possesses symmetric
ET states, it is possible to obtain probability distributions for the
energy gap on either diabatic state—and hence, free energy
profiles for either state—using energy gaps sampled from only
one diabatic state. As for the Fe2+�Fe3+ system, the energy gaps
can be mapped reasonably well onto a Gaussian, resulting in
parabolic free energy profiles possessing a reorganization energy
λ = 1.53 eV. A correction term +0.09 eV was applied to the
reorganization energy to account for the exclusion of the outer-
shell and bulk water from the constraint region.182 No direct
experimental probe of the reorganization energy is available for
comparison to the CDFT-MD estimate λ = 1.62 eV. However, an
estimate λ = 2.0 eV obtained by applying several assumptions to
experimental data183 suggests that the CDFT-MD approach
attains at least a qualitatively correct picture of ET self-exchange
between aqueous metal ions at finite separation.

The qualitatively correct reorganization energies obtained in
the aqueous self-exchange studies show that an explicit descrip-
tion of the solvent can capture intermolecular interactions that
the implicit models miss. However, the increase in computational
cost associated with a DFT description of the solvent can be
prohibitive for larger systems. Therefore, hybrid QM/MM
models—which treat the solute (and possibly some nearby
solvent) withDFTor anotherQMmethodwhile using an empirical
force field to describe the solvent—have become popular in
theoretical simulations of complex systems,184 including ET
systems.181 It is straightforward to construct diabatic states from
CDFT in the context of a QM/MMmodel, provided one makes
the common approximation that no charge is transferred be-
tween the QM andMM subsystems. Then, the standard machin-
ery of electronically embedded QM/MM can be used without
modification for density-constrained QM/MM simulations.
There exist methods to assess the assumption of no charge
transfer across the QM/MM boundary,185 although no such
approach has yet been interfaced with CDFT.

A CDFT/MM approach was recently used to compute ET
free energy profiles for charge recombination in the FAAQ dyad
introduced in section 3.3. In this study, polarizability of the
DMSO environment was incorporated through reparameteriza-
tion of an existing force field186 to confer isotropic polarizabilities
on the heavy atoms using a charge-on-spring model.187 Equilib-
rium configurations of each diabatic state were sampled from
CB3LYP/MMMD simulations and used to construct probability
distributions that presented a greater degree of skewness than
was observed in the self-exchange studies.188 Making the linear
response approximation, the free energy profiles are Marcus
parabolas with equal curvature, and the reorganization energy
obtained from the simulations is λ = 1.64 eV, within the range λ =
1.4�1.8 eV inferred from experiment. The ET parameters
obtained from this study are shown in Table 4.

In section 3.3, an implicit solvent approach determined λ = 0.6
eV for the same system. The explicit model clearly reproduces the
solute�solvent interactions in the experiment more faithfully
than the implicit model, albeit at greatly increased computational
expense. The success of the CDFT/MM approach in the case
of FAAQ is especially promising because, unlike in the ion

Figure 15. Diabatic free energy surfaces for ET in the aqueous
Fe2+�Fe3+ system at finite Fe�Fe separation, obtained using CDFT.
The portion of the reaction coordinate sampled using each of three
values for the umbrella sampling parameter r is indicated by color.
Reproduced with permission from ref 161. Copyright 2006 American
Physical Society.



337 dx.doi.org/10.1021/cr200148b |Chem. Rev. 2012, 112, 321–370

Chemical Reviews REVIEW

self-exchange systems, ET in FAAQ is asymmetric and intramo-
lecular; both of these features should challenge the method, and
yet the obtained reorganization energy is quantitatively correct.

3.5. Related and Ongoing Work
The early successes of CDFT for describing ET states,

together with the availability of fast implementations of CDFT,
are catalyzing a shift from proof-of-principle calculations toward
active use in the interpretation of experimental data.

The ability of CDFT to assist in the characterization of mixed-
valence compounds was illustrated in section 3.2 by the calcula-
tion of charge-localized geometries and by the simulation of STM
images of a mixed-valence compound. CDFT can also provide
access to the vibrational signatures of charge-localized states.
This feature was exploited by Hoekstra and co-workers in the inter-
pretation of Raman spectra of the mixed-valence 4,40-dinitroto-
lane radical anion in several solvents.189 Optical spectra of the
compound190 suggest an equilibrium between the charge-loca-
lized (class II) structure and the charge-delocalized (class III)
structure, the balance of which depends on the intrinsic reorga-
nization energy λs of the solvent. As an alternative test of this
hypothesis, Hoekstra and co-workers obtained Raman spectra of
the radical anion in solvents with differing λs. They then
calculated the relevant vibrational frequencies of the geometry-
optimized anion in its charge-delocalized and charge-localized
states, as obtained by conventional and constrained DFT,
respectively. By correlating differences between the gas-phase
DFT and CDFT frequencies to spectral shifts, they were able to
assign the two sets of peaks in the Raman spectra to the charge-
localized and charge-delocalized states. The study provided
further evidence that an equilibrium between two charge states
exists in solution and depends on the solvent reorganization
energy.

In addition to its role in the interpretation of spectroscopic
measurements, CDFT is also poised to broaden our under-
standing of the role of CT states in photophysical and photo-
chemical applications. For example, the relative energies of low-
lying localized and CT excited states can control the relative
likelihood of radiative or nonradiative relaxation to the ground
state after photoexcitation. Taking advantage of this phenomen-
on, synthetic chemists have designed a panoply of small-mole-
cule sensors whose fluorescence is modulated by the presence of
a particular analyte.191 This switching behavior depends on small
changes in the relative energies of a localized excited state and a
CT excited state, and thus it presents a challenge for theoretical
modeling within the framework of DFT. A recent study of the
localized and CT excited states in the zinc sensor Zinpyr-1 (ZP1)
used TDDFT and CDFT to characterize the local and CT
excited states, respectively, in the absence and in the presence
of its Zn2+ analyte.192

CDFT calculations confirmed that the CT state in ZP1 is
energetically inaccessible for fluorescence quenching by photo-
induced ET when the sensor is binding two Zn2+ ions. The
ordering of the excited states in the absence of Zn2+ was found to
depend strongly on pH, clouding the ability of the approach to
provide a complete picture of the photophysics in ZP1. Still, the
CDFT approach provided supporting evidence for the hypothe-
sis that the electron donor in ZP1 is primarily the amine nitrogen
of the dipicolylamine arm, with some minor contribution from
the pyridyl nitrogens. This evidence was obtained by decomposing
the Becke populations of the constrained CT state over the
functional groups of the sensor, shown in Figure 16. Both dipicoly-
lamine arms donate electron density to the central xanthone ring in
bare ZP1; however, if one of the arms binds Zn2+, then ET from the
corresponding arm ismostly quenched, and theother armdonates
a larger fraction electron density to compensate.

Together, the studies highlighted in this section have estab-
lished that CDFT can parametrize diabatic potential energy
surfaces on the fly with an accuracy nearing that of ground-state
DFT. This capability should prove valuable for real-time quan-
tum and semiclassical dynamics simulations which trace the
evolution of the wave function describing the ET system.
Together with an explicit solvent model, CDFT calculations
can provide access to diabatic states of larger systems in
strongly interacting environments. It will be interesting to
see how else this efficient scheme for constructing diabatic
states might be applied to further our understanding of ET
processes.

Table 4. ET Parameters for FAAQ in DMSO Obtained from
CDFT-MD Simulations: Average Energy Gap ΔE in the
Neutral (N) and Charge Transfer (CT) Diabatic States,
Reorganization Energy λ, Driving Force �ΔGCR, and Acti-
vation Free Energy ΔGCR

‡ a,b

basis set ÆΔEæN ÆΔEæCT λ � ΔGCR ΔGCR
‡

3-21G 4.13 0.86 1.63 2.49 0.11

6-31G* 4.03 0.74 1.64 2.38 0.08
aData reproduced from ref 188. bAll energies are in eV.

Figure 16. Decomposition of electron density in the CT state of ZP1 by functional group, without and with zinc analyte. Reproduced with permission
from ref 192. Copyright 2010 American Chemical Society.
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4. LOW-LYING SPIN STATES

In systems with unpaired electronic spins, the energy spectrum
of available spin states often underlies key physical and chemical pro-
perties. These states dictate, for example, the strength of molecular
magnets193 and the coordination chemistry and color of transition-
metal complexes. Interconversions between spin states can influence
the product distributions of photochemical reactions194 and have
direct bearing on the efficiency of charge separation and recombina-
tion in organic photovoltaics (OPVs) and organic light-emitting
diodes (OLEDs).195

The full electronic structure of the system, as embodied in the
N-electron wave function, often represents a finer level of detail
than is required to understand the spin properties of the system.
After all, in the ground and low-lying excited states of a molecule,
most of the electrons are spin-paired and can therefore con-
tribute only indirectly to spin properties. Instead, it is common
practice to adopt a simplified local model of spin in which
unpaired electrons are assigned to local sites A, B, ... in accor-
dance with chemical intuition. For example, excess spin may be
localized on a radical center in an organic molecule or on a
paramagnetic ion in a transition metal complex. The spin states
and their energies are then modeled as eigenstates of a
Heisenberg Hamiltonian,196

Ĥ ¼ � 2 ∑
A < B

JABŜA 3 ŜB ð35Þ

The coefficients JAB are the exchange coupling constants which
describe the interaction strength of unpaired spins A and B, and
ŜA (ŜB) is the spin operator for the electron at site A (B).
Although this model is approximate,197 it effectively captures the
important spin degrees of freedom and enjoys widespread use.

The idea of parametrizing a Heisenberg Hamiltonian using ab
initio data harkens back to Nesbet198 and continues to be a
popular way to model spin states. More recently, Clark and
Davidson introduced a projection method199 to compute ex-
pectation values of local spin operators from quantum chemistry
calculations. This technique employs the L€owdin atomic
populations126 to define fragment projection operators PA, which
are applied in turn to the total spin to obtain local spin operators

ŜA ¼ ∑
N

i¼ 1
ŜðiÞ PAðiÞ ð36Þ

where Ŝ(i) is the spin operator for electron i. In applications to
simple closed and open-shell molecules, this approach revealed
relationships between expectation values of quantities such as
ÆŜAŜBæ and ÆŜA2æ and the intuitive concept of chemical bond
order.199 Several related approaches to the definition of local spin
states exist; for further reading on the topic, we suggest the recent
review by Reiher.200

Local spin operators are valuable tools for extracting informa-
tion about spin from converged electronic structure calculations.
Moreover, provided a satisfactory definition of local spin, it
becomes possible to construct self-consistent electronic structure
methods which are intentionally steered to achieve a particular
value of the local spin. Constrained DFT is especially well-suited
for this class of applications because CDFT constraints can be
defined over arbitrary local sites in the system.

In this section we review several studies in which CDFT has
been applied to spin states. In some cases, the spin is localized on
one molecule in a larger system, while in others the spin is
localized on a particular site within a molecule, such as a metal

center. In both cases, the CDFT approach alleviates certain
shortcomings with the conventional DFT description and brings
theory closer to agreement with experiment through more
controlled approximations to spin states.

4.1. Tracing Out Constant-Spin States
In certain situations, it can be useful to treat entire molecules

as local spin sites within a larger system. This picture is especially
fruitful in the study of reactions between subsystems of different
spin symmetry, in which an adiabatic picture of the reaction can
excessively delocalize the spin and lead to an incorrect descrip-
tion of the reaction. CDFT has been used to study reactions of
this type. In a particularly striking illustration of this approach,
CDFT helped elucidate the origins of a long-standing disagree-
ment between theory and experiment concerning a fundamental
process in surface science: the dissociative adsorption of molec-
ular oxygen on the (111) surface of aluminum.201

The probability that an oxygen molecule incident on the
Al(111) surface will dissociate and be adsorbed is known from
experiments to depend strongly on the kinetic energy E of the O2

molecule, a ground-state triplet.202 A plot of the adsorption
probability as a function of the O2 kinetic energy, known as a
sticking curve, is shown in Figure 17. The sticking curve shows
that O2 molecules with very low kinetic energy are unlikely to be
adsorbed. The adsorption probability increases with increasing
O2 kinetic energy until reaching a plateau at higher energies.

Several theoretical treatments of the dissociative adsorption of
O2 on Al(111), including sophisticated first-principles investi-
gations,203,204 predicted near-unity sticking probability regard-
less of O2 kinetic energy due at least in part to the lack of a barrier
to dissociation on the O2/Al(111) potential energy surface
(PES). Scheffler et al. examined the adiabatic PES in detail with
the PBE and revised PBE (RPBE) functionals and observed
spurious fractional charge transfer from Al to O2, even at long
distances.201 Spin conservation laws strongly disfavor this partial
quenching of the unpaired spin in triplet O2 at long distances. To
compensate for this shortcoming of the adiabatic PES, they
introduced a spin-constrained DFT approach to force the O2

molecule in the interacting O2/Al(111) system to remain in its
triplet ground state during their simulations.201

The adiabatic and diabatic (triplet) sticking curves were
computed through a three-step procedure.205 First, the PES of

Figure 17. Experimental (black diamonds), conventional adiabatic DFT
(blue inverted triangles), and triplet spin-constrained DFT (red triangles and
green circles) initial sticking curves forO2 on theAl(111) surface. Reproduced
with permission from ref 205. Copyright 2008 American Physical Society.
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the O2/Al(111) system was mapped along the six O2 degrees of
freedom, with the metal surface held fixed. An analytical form for
the PES was then obtained through a neural network interpola-
tion scheme.206,207 Finally, thousands of molecular dynamics
(MD) trajectories were simulated on the analytical PES and the
sticking probabilities were calculated from statistical analysis of
the trajectories.

The adiabatic simulations generally presented barrierless
pathways to O2 dissociation, even if the Al degrees of freedom
were included in the simulations. In contrast, CDFT parame-
trization of the diabatic PES revealed barrier heights up to 0.9 eV,
as illustrated schematically in Figure 18. MD simulations on the
diabatic PES gave sticking curves that qualitatively agree with
experimental data formoderate to highO2 kinetic energy (Figure 17).
At lower kinetic energies, the PBE functional showed an un-
physical trend toward higher sticking probabilities. This feature
was rationalized in terms of the tendency of the PBE functional to
predict lower dissociation barriers for the O2/Al(111) system
relative to the RPBE functional. Several pathways were identified
on the PBE PES which enabled low-energy O2 molecules to
undergo barrierless dissociation, artificially raising the sticking
probability.

A magnetization density analysis of O2 at the barrier to
dissociation illustrates one reason behind the success of the
constrained spin-density approach. In Figure 19, the magnetiza-
tion density of the system near the dissociation barrier is shown
for (a) the pure ground-state O2 triplet, (b) the adiabatic O2 PES,
(c) a fixed spin moment (FSM) calculation in which the total
spin of the system is constrained but not localized on O2, and (d)
the constrained diabatic O2 PES. The physical origin of the
dissociation barrier is attributed to enhanced Pauli repulsion at
the O2/Al(111) interface, which is only evident in part d. The
fixed spin moment calculation in part c shows a negligible
dissociation barrier despite the constraint on total spin because
the magnetization density of the triplet O2 is largely transferred
to the aluminum.

Constrained DFT provided the earliest qualitatively correct
first-principles theoretical description of the dissociative adsorp-
tion of O2 on Al(111). This reaction continues to attract signi-
ficant interest in surface science. More recent theoretical studies
have employed nonadiabatic surface-hoppingMD simulations208

and have considered the roles of self-interaction error209 and
memory effects210 on adsorption at metal surfaces. In these

studies, CDFT provides a convenient way to capture nonadia-
baticity by forcing molecules to preserve their proper spin states
as they begin to interact. In the next section, we consider
applications in which spin constraints are applied on an intra-
molecular scale in order to describe single molecules with several
spin centers.

4.2. The Heisenberg Picture of Molecular Magnets
The promise of tunable magnetism at the single-molecule

level has driven a vast and growing body of research in molecular
magnetism that is too large to review here. The interested reader
may find several reviews discussing the scope of candidate
structures,211,212 the range of applications,212 and the underlying
physics.193,213 Molecular magnets generally possess one or more
metal centers on which most of the spin density is localized. In
this section, we discuss how CDFT has been used to enforce spin
localization when it is artificially diminished due to limitations of
available density functional approximations, but first, we sum-
marize some features of other density functional approaches to
molecular magnetism.

The Heisenberg Hamiltonian (eq 35, also sometimes referred
to as the Heisenberg�Dirac�van Vleck or HDVVHamiltonian)
is a common starting point for theoretical models of molecular
magnetism. Semiempirical or ab initio methods may be used to
compute the exchange couplings J, which in turn determine the
energies of the available spin states. Most molecular magnets are
too large to describe using correlated wave function methods, so
DFT is the more commonly employed tool for computing the
exchange couplings. Within the Kohn�Sham formalism, the
difficulty arises that certain spin states may not be representable
by a single Kohn�Sham determinant with available density
functional approximations. For example, in a system with two
unpaired electrons, the singlet spin state |Ψsæ is a linear
combination of two Kohn�Sham determinants,

jΨsæ ¼ 1ffiffiffi
2

p ðj v V æ� j V v æÞ ð37Þ

Figure 18. Schematic of the diabatic (singlet and triplet) and adiabatic
PES for O2 approaching the Al(111) surface. Z represents the O2�Al-
(111) distance. The diabatic triplet PES was found to exhibit a barrier
that is responsible for the experimentally observed scattering of most
incident O2 molecules at low kinetic energy. Reproduced with permis-
sion from ref 205. Copyright 2008 American Physical Society. Figure 19. Magnetization density cross-section of triplet O2 at the

energetic barrier to its approach to the Al(111) surface. Black dots
represent O nuclei, and white dots represent Al nuclei. (a) Free O2

triplet, no aluminum. (b) Adiabatic O2/Al(111) calculation. (c) Fixed
spin moment calculation. (d) Spin-constrained calculation. Reproduced
with permission from ref 205. Copyright 2008 American Physical
Society.
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The |vVæ and |Vvæ determinants are referred to as broken sym-
metry (BS) states because they are not eigenfunctions of Ŝ2. Note
that the highest-spin state of a given multiplet is always repre-
sentable by a single determinant, e.g., for two unpaired electrons
the high-spin triplet can be described by the determinant |vvæ.

Noodleman proposed a way to extract exchange couplings
from the BS states214 by treating each BS state as an uncoupled
spin state, i.e., a state in which the unpaired electrons are each
assigned a local site and spin such that they reproduce the z
component of the total spin of the state. For the case of twometal
centers A and B, the BS-DFT exchange coupling is given by

JAB ¼ EBS � EHS
4SASB

ð38Þ

where EHS (EBS) is the energy of the high-spin (low-spin) state.
An alternative formula has been proposed215 that treats the low-
spin BS state as an approximation to the coupled low-spin
configuration with ÆŜ2æ = (SA � SB)(SA � SB + 1) rather than
the uncoupled configuration with ÆŜ2æ = (SA � SB)

2,

JAB ¼ EBS � EHS
2ð2SASB þ SBÞ ð39Þ

An expression in terms of the ÆŜ2æ value of the relevant
Kohn�Sham determinants has also been proposed,216

JAB ¼ EBS � EHS
ÆŜ2æHS � ÆŜ2æBS

ð40Þ

This expression can be thought of as an interpolation between
the uncoupled and coupled spin approximations in eqs 38 and 39,
respectively.39

Notwithstanding the many successes of the BS approach,217

the method is known to overstabilize singlets, resulting in
JAB values that are too negative.218,219 This error reflects
both the spin-representability problem and errors in the descrip-
tion of correlation effects in these spin systems. Further, from
a formal perspective, the existence of BS states is an artifact
of approximations to the exchange-correlation functional:39

the exact exchange-correlation functional takes spin symmetry
fully into account and therefore obtains the exact ground
state of each spin configuration.220 Thus, BS states obtained
from inexact exchange-correlation functionals are not rigorous

approximations to the uncoupled spin states; in particular, the spatial
extent of excess spin density in BS states is uncontrolled.

As an alternative approach to the uncoupled spin states,
CDFT can be used to enforce localization of the unpaired spins
on their assigned centers.39 For example, in a heterobimetallic
complex withmetal centersA and B, onemight constrain the spin
density on metal center A to integrate to one net α (v) spin while
also constraining the spin density on metal center B to integrate
to one net β (V) spin. The CDFT exchange coupling is then
computed according to

JAB ¼ EvV � Evv
4SASB

ð41Þ

These local spin states are a more controlled approximation to
the uncoupled spin states than those defined through the BS
approach,39 and their single-reference character is well-suited to
available density functional approximations.

Rudra et al. demonstrated the advantages of the CDFT
approach to magnetic exchange couplings relative to the BS
approach for a diverse collection of magnetic transition-metal
complexes.39 Comparing the CDFT exchange couplings with
couplings obtained from several BS-DFT prescriptions, shown in
Table 5, it is clear that CDFT offers comparable to superior
accuracy relative to BS calculations for both antiferromagneti-
cally (J > 0) and ferromagnetically (J < 0) coupled centers.
CDFT predicts qualitatively correct exchange couplings, whereas
BS-DFT couplings show some tendency to overestimate the
strength of these interactions.

The CDFT approach to exchange couplings is applicable to
the more general case of several local spin sites, as shown by
Rudra and co-workers230 in a computational study of frustrated
molecular magnets such as the tetranuclear iron cluster
[Fe4O2(O2CCH3)7(bpy)2]

+ shown in Figure 20a. This study
demonstrated that the difficulty of describing low-spin excited
states with BS-DFT leads to predictions for molecular magnets
that sometimes contradict experimental findings, whereas the
CDFT results were at least in qualitative agreement with experi-
ment in each case. For example, CDFT predicts the experimen-
tally known antiferromagnetic interaction for the weaker of the
two exchange couplings in the tetranuclear iron cluster, whereas

Table 5. Magnetic Exchange Couplings for Different Dinuclear Complexes Obtained by CDFT and the Indicated BS-DFT
Approaches, with Experimental Results for Comparisona

JAB (cm
�1)

complex CDFT eq 38 eq 39 eq 40 expt

[CuII2(MeC(OH)(PO3)2)2]
4� �16 �139 �70 �139 �31b

[(Et5dien)2Cu
II
2(μ-C2O4)]

2+ �44 �133 �67 �132 �37c

[MnII(NH3)4Cu
II(oxpn)]2+ �128 �284 �237 �278 �16d

[(μ-OCH3)V
IVO(maltolato)]2 �83 �89 �45 �89 �107e

[Ph4P]2[Fe2
IIOCl6] �124 �163 �136 �160 �112f

[MnIIIMnIV(μ-O)2(μ-OAc)DTNE]
2+] �128 �168 �134 �165 �110g

[Cu2(DMPTD)(μ2-N3)(μ2-Cl)Cl2]CH3CN 112 113 57 110 84h

[Cu2(μ-OH)2(bipym)2](NO3)2 3 4H2O 57 112 56 111 57I

[(Dopn)CuII(OH2)Cr
III(OCH3)L](ClO4)2 3H2O

j 23 10 7 10 19k

[(Dopn)CuII(μ-CH3COO)�MnIIIL](ClO4)2 3H2O
j 75 48 38 48 55k

aData from ref 39. bReference 221 cReference 222. dReference 223. eReference 224. fReference 225. gReference 226. hReference 227. IReference 228.
j L = 1,4,7-trimethyl-1,4,7-triazacyclononane. kReference 229.
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the interaction is ferromagnetic in BS-DFT. Delocalization of the
spin density of low-spin states in BS-DFT (left side of
Figure 20a) artificially stabilizes these states relative to other
states, resulting in an incorrect sign for the coupling. Note that
the spin density in CDFT is mostly localized on the iron centers
in Figure 20a, despite the fact that the ligands were also included
in the constraint regions. The spin-frustrated ground-state spin
density of the Fe8 cluster obtained from CDFT and shown in
Figure 20b agrees with data from polarized neutron diffraction
and 57Fe NMR experiments.231,232 Thus, CDFT calculations
can quantify the relative energetics of complicated spin systems,
including those arising in frustrated molecular magnets.

Broken symmetry methods remain popular because they are
well-studied and readily available; nevertheless, the CDFT
approach to exchange couplings holds promise for future studies
of molecular magnetism for two reasons. First, CDFT allows
control of the spin localization, which can be quite useful in
locating the various spin states. Though not widely publicized,
the biggest challenge in BS-DFT is usually getting the various
spin states to converge. CDFT circumvents this obstacle by
giving the user manual control over which localized spin pattern
the calculation converges to, making the calculations much more
reliable. Second, CDFT offers an even-handed description of
ground and excited states. In the following section, we illustrate
the latter point by focusing on the splitting between a special pair
of spin states: the lowest singlet and triplet charge transfer excited
states in dimers of organic dyes.

4.3. Singlet�Triplet Gaps of Intermolecular CT States
The relative populations of singlet and triplet states in organic

semiconductors (OSCs) directly affect the efficiency of organic
light-emitting devices (OLEDs) and organic photovoltaics
(OPVs). In the case of OLEDs, free electrons and holes in the
OSC associate at a donor�acceptor interface to form charge-
transfer (CT) excited states. These CT states may be generated
with either singlet or triplet spin. Charge recombination of the
CT state to form a localized electron�hole pair, or exciton,
generally takes place with retention of spin character. Singlet
excitons are efficient light emitters, because the relaxation to the
ground state via fluorescence is spin allowed. The analogous
transition from the triplet exciton is forbidden. Hence, triplet
formation is considered an indirect loss mechanism for OLEDs,
and the relative populations of singlet versus triplet CT states
formed at the interface influence the overall efficiency of
the OLED.

If free electrons and holes associate randomly in an OLED,
one expects a 3:1 statistical ratio of triplet to singlet CT states. In

practice, someOSCs exhibit this ratio while others obtain a larger
fraction of singlet CT states.233�235 Enhancement of the singlet
pathway is certainly beneficial for the efficiency of OLEDs, but
the mechanism underlying this enhancement is not immediately
clear. Initial proposals invoked Marcus inverted region behavior:
the triplet exciton is lower in energy than the singlet, so the free
energy of charge recombination from the CT state to the singlet
exciton will be smaller than that for the triplet,ΔGS

CR <ΔGT
CR.

SinceΔGCR is on the order of 1 eV and the reorganization energy
λ is on the order of 0.1 eV, the recombination is in the inverted
regime and the singlets will form faster than the triplets. Thus, if
one assumes facile spin randomization in the CT state, then the
kinetics dictate enhanced singlet exciton generation because they
are formed more frequently.195

An alternative hypothesis is that the ratio of singlet versus
triplet excitons is governed by the energy gap between the singlet
and triplet CT states,ΔEST = E(

3CT)� E(1CT) (Figure 21). To
explore the role of the energy gap on the relative rates of singlet
and triplet exciton formation, Difley et al. used CDFT to
compute the energies of these CT states and obtain ΔEST
directly.236 Their investigation centers on the observation that,
for systems in the Marcus inverted region, a large ΔEST
discourages intersystem crossing; thus, fluorescence in an OSC
may be enhanced by a small ΔEST or precluded by a large ΔEST.

Contrary to the common (Hund’s rule) assumption, it was
found that ΔEST < 0 for the CT states of the studied chromo-
phore dimers. (As shown in Table 6, the magnitude of the
splitting varies from a few millielectronvolts to over 100 meV
depending not only on the particular dimer but even on the
translational offset of the donor relative to the acceptor in the
solid state.

The negative singlet�triplet splittings predicted using CDFT
were rationalized using a perturbation theory-based expression
for the splitting,

ΔEST ¼ � t2

ΔE
þ K ð42Þ

where t is an intrinsic electron hopping rate between donor and
acceptor, while ΔE describes the energy gap between the initial
state and virtual states in the system that facilitate hopping. The
second term K is the usual exchange integral which stabilizes the

Figure 21. Exciton formation pathways for nearly degenerate CT states
(top) and for ΔEST < 0 (bottom). S and T label singlet and triplet
excitons, respectively. Reproduced with permission from ref 236. Copy-
right 2008 American Chemical Society.

Figure 20. (a) Spin density of a low-spin state of a tetranuclear iron
cluster, determined from BS-DFT (left) and CDFT (right). The spin
density is significantly more localized on the metal centers in the CDFT
calculation. (b) Ground-state spin density of the Fe8 molecular magnet
from CDFT calculations. Green (blue) isosurfaces represent net α (β)
spin density. Reproduced with permission from ref 230. Copyright 2007
American Chemical Society.
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triplet. On the other hand, the first term, which describes kinetic
exchange, tends to stabilize the singlet, as illustrated in Figure 22.
This exchange process stabilizes the singlet CT state because of
the transient pairing of spins, which is an inaccessible configura-
tion for the triplet CT state.

To assess the kinetic exchange hypothesis, Difley et al. ap-
proximated the hopping term t by donor�acceptor orbital
overlaps S and studied how ΔEST and S vary as a donor and
acceptor are laterally displaced from one another. Figure 23
shows that the variation in HOMO/LUMO S2 along the
displacement coordinate tracks the variation in ΔEST rather well
for poly-p-phenylene and for DCM. This proportionality sug-
gests that the kinetic exchange term �t2/ΔE is the dominant
factor controlling ΔEST in these dimers and that the kinetic
exchange stabilization is dominated by HOMO/LUMO
interactions.

Interest in understanding and tuningΔEST is only expected to
grow as research into OLEDs and OPVs increasingly turns to the
manipulation of spin states to increase performance.237,238 In-
sights into the role of ΔEST in modulating singlet versus triplet
exciton generation have already been brought to bear on OLED
design. Segal et al. incorporated an iridium complex (FIrpic)239

as the electron transport layer of an OLED to enhance spin
randomization during exciton formation through increased
spin�orbit coupling.240 The resulting extrafluorescent OLED
(X-OLED) demonstrated nearly 3-fold enhancement of the
quantum efficiency (Figure 24). It has also been pointed out238

that spin control of CT-state generation appears to be a more
promising route to achieving long-lived CT states in small-
molecule donor�acceptor dyads than the exploitation of Marcus
inverted region behavior in these systems. Reliable first-princi-
ples calculations ofΔEST will prove valuable in the interpretation
of ongoing time-resolved EPR241 and CINDP experiments242

that can probe ΔEST in OLED and OPV matrerials.

4.4. Related and Ongoing Work
The use of constraints on the spin density is finding applica-

tion in several other areas of chemistry and physics. One
promising use of the technique is in the suppression of spin

contamination in unrestricted Kohn�Sham (UKS) calcula-
tions.243 By taking advantage of a previously proposed approx-
imate density-based metric244 for ÆŜ2æ,

ÆŜ2æ ¼ SðS þ 1Þ �
Z

R ¼frjFαðrÞ�FβðrÞ < 0g
ðFαðrÞ � FβðrÞÞ d3r

ð43Þ

Schmidt et al. fixed a target value of ÆŜ2æ and solved the UKS
equations subject to the constraint defined by eq 43 on the
density.

This spin contamination constraint is useful not only for
eliminating spin contamination from UKS calculations but also
for restricting spin contamination only to regions of a system
where spin polarization is anticipated on physical grounds.

Table 6. ΔEST
a

ΔEST (meV)

chromophore 3-21G 6-31G*

α-Alq3
b �2 �2

β-Alq3
b �6 �7

δ-Alq3
c �60 �74

1-R1-dpa
d �58 �61

4-R2-dpa
d �1 �5

4-R3-dpa
d �30 �42

Zn(sada)2
e �102 �102

[Zn(bbp)2]
2+f �67 �57

[Zn(tpt)2]
2+f �19 �48

[Zn(tpy)2]
2+f �85 �89

aData from ref 236. bAlq3 = tris(8-hydroxyquinoline)aluminum(III)
cAlq3 = tris(8-hydroxyquinoline)aluminum(III) d dpa =2,20-dipyridyla-
mine, R1 = pyrenyl, R2 = (1-pyrenyl)phenyl, R3 = 40-(1-pyrenyl)-
biphenyl eZn(sada)2 = bis[salicylidene(4-dimethylamino)aniline]zinc-
(II) f bbp =2,6-bis(1H-benzimidazol-2-yl)pyridine, tpt =2,4,6-tris(2-
pyridyl)-1,3,5-triazine, tpy =2,200:60,200-terpyridine.

Figure 22. Illustration of the kinetic exchange mechanism. The process
of exchanging spins involves transient spin-pairing; this process favors
the singlet CT state because Pauli repulsion prevents this type of kinetic
exchange in the triplet CT state. Reproduced with permission from Ref
236. Copyright 2008 American Chemical Society.

Figure 23. ΔEST (thick solid red curve) and squared orbital overlaps for
poly-p-phenylene (top) and DCM (bottom) as a function of layer
monomer displacement. Squared overlaps (in arbitrary units) are shown
for HOMO/LUMO (thick dashed blue line), HOMO � 1/LUMO
(thin solid black line), and HOMO/LUMO + 1 (thin dashed green
line). Reproduced with permission from ref 236. Copyright 2008
American Chemical Society.
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The hyperfine coupling tensor A, which describes the interaction
of an electronic spin S and a nuclear spin I via the Hamiltonian
H = S 3A 3 I, is an experimentally observable probe of spin
polarization; thus, DFT modeling of hyperfine couplings is
especially sensitive to the description of spin polarization. Spin-
contamination constrained calculations on the transition metal
complex [Mn(CN)5NO]

2� bring predictions of the anisotropic
component of the hyperfine coupling constant within 30% of the
experimental value, whereas the unconstrained calculation dis-
agrees with experiment by more than 70%, as shown in Table 7.
The spin contamination constraint was also applied to compute
diabatic dissociation curves for the OF radical. This approach was
able to correctly predict the OF distance at which the crossover
from singlet to triplet character is expected to occur.

Constrained density functional methods are also becoming
standard in computational studies of nanoscale magnetization in
metallic clusters and bulk metals. Because magnetically excited
states (i.e., magnons) in metals245 do not necessarily correspond
to stationary points on the adiabatic PES, these states require an
approach in which the magnetization is constrained. A common
approximation in DFT modeling of magnetic configurations in a
metal is the atomic sphere approximation (ASA),246 in which the
spin density is projected onto a predefined local spin quantiza-
tion axis95 within a sphere around each atom prior to evaluation
of the exchange-correlation energy. The ASA is a further
approximation beyond the local spin density approximation. It
has been shown247 that constraining the density with the ASA

can result in magnetizations that are not parallel to the self-
consistently determined magnetic fields which produce them—
a situation which is technically not stationary and leads to
drastically incorrect predictions of the moment magnitudes for
Ni and Co metal.95

Gebauer and Baroni used a constrained DFT approach to
study magnetic excitations from the spin-spiral ground state of
bcc iron.248 Unlike charge and spin constraints in CDFT—which
are enforced by an external electric potential—their magnetiza-
tion constraint is enforced by an external magnetic potential
which depends self-consistently on the density. Calculations of
the magnon frequencies in bcc iron yielded a dispersion curve in
near-quantitative agreement with experiments on pure iron at
10 K.248 A comparative study of ASA and constrained LSDA
descriptions of magnetic configuarations in Fe, Ni, and Co
revealed that constrained LSDA is not only more accurate for
predictingmagnetic moments inmetals, but it is alsomore robust
to the choice of approximate representation of the magnetization
density than the ASA.95

Across a diverse set of applications, the CDFT description of
spin states has proven useful for computing spin-dependent
observables from first principles. Furthermore, in studies of
molecular magnets and OLEDs, CDFT has provided physical
insights, such as the trend for singlet CT states to lie energetically
below their triplet counterparts. CDFT is an important step
toward quantitative first-principles descriptions of spin ener-
getics and dynamics that may contribute to the understanding
and development of next-generation spin-dependent technolo-
gies. Further, constrained spin states form a suitable basis for
configuration interaction methods such as CDFT-CI (discussed
in section 6), which accounts for couplings between spin
states.

5. COUPLING CDFT STATES TOGETHER

The previous sections have shown a variety of applications
wherein CDFT is used to produce localized diabatic states which
are then analyzed to yield information about electron transfer,
CT-state dynamics, molecular magnets, and more. Diabatic
states such as these have a long history in chemistry, being
incorporated into valence bond theories of bonding and models
for molecular energy surfaces, with a strong continuing presence
in thediverse spreadofmethods for their determination.158,159,249�266

Diabatic states do not change character as a function of nuclear
position and as such are at the core of many qualitative pictures of
molecular electronic structure, including the charge-transfer
states of section 3 and the uncoupled spin states of section 4.
But to fill out the diabatic picture, electronic couplings between
these diabatic states are also needed, describing how population
flows between the diabats as the system evolves. This is in
contrast with the adiabatic (Born�Oppenheimer) picture, where
electronic states are always taken to be eigenstates of the
electronic Hamiltonian with no direct coupling to each other,
no matter the geometry of the system. Nonetheless, the diabatic
picture proves itself quite useful, producing PESs for dynamics
that vary slowly with nuclear coordinates and thus avoid sharp
changes where errors can accumulate. Additionally, diabats are
invoked to assign vibronic transitions in spectroscopy and for
qualitative descriptions of molecular bonding (as for the LiF
example of Figure 41), electron transfer (cf section 3), and
proton tunneling. However, since the diabatic states are not
eigenstates of the electronic Hamiltonian, chemistry (that is,

Figure 24. Quantum efficiency of a heavymetal dopedOLED (X-OLED)
device versus controlOLED. The efficiency enhancement (thick red line) is
also shown, plotted against the right axis. Reproducedwith permission from
ref 240. Copyright 2007 Nature Publishing Group.

Table 7. ÆŜ2æ Values, Isotropic and Anisotropic Components
of the Hyperfine Coupling Constant A (in MHz) for the
[Mn(CN)5NO]

2� Complex Obtained via Unconstrained
(none), Fully Constrained (all), and Ligand-Constrained
(ligands) Calculations with the BHPW91 Functionala

none all ligands experiment

ÆŜ2æ 2.1266 0.7525 0.7525 (0.75)

Aiso �340 �1 �284 �219

Adip �30 �145 �145 �115.2
aData from ref 243.
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reactions) in the diabatic basis must necessarily incorporate
multiple diabats, and the diabatic coupling between them:

Hab ¼ ÆΨajĤjΨbæ ð44Þ
These couplings aid in determining the rate of electron-transfer
processes (cf. eq 33) as occur in organic semiconductors
(OSCs)163,267�269 and solution electrochemistry270�273 and also
govern energy transfer in photochemistry.274�276 In addition to
these direct applications, the couplings can be combined with the
diagonal diabatic energies as an alternate route to adiabatic
energies, as will be explored in section 6.

In this section, we describe how to compute the coupling
HAB;

47,54,55,135,277 we then compare these couplings with results
from other coupling prescriptions that have seen use and
describe how our scheme fits in with the landscape of other
proposed approaches to diabatic couplings. Finally, we give a few
illustrations of how diabatic couplings may be used in the context
of chemical or electronic transformations.

5.1. Evaluating CDFT Couplings
Given two electronic states |Ψ1æ and |Ψ2æ, the coupling

between them is just the matrix element of the Hamiltonian,

HAB ¼ ÆΨ1jĤjΨ2æ ð45Þ
The behavior of this coupling is in general quite complicated, but
there are simple cases that can be more easily understood.
Considering a system that includes electron donor and acceptor
moieties, natural descriptions of |Ψ1æ and |Ψ2æwould be to have
an electron on the donor and acceptor, respectively. If the
moieties are spatially removed from each other, the coupling is
dominated by overlap between the tails of the wave functions on
the two fragments. Since the tail decays exponentially, the coupl-
ing is also expected to decay exponentially with donor�acceptor
separation as a result of this “through-space” coupling.278 How-
ever, when the donor and acceptor are joined by a bridge moiety,
the coupling can be increased due to a superexchangemechanism
involving the electrons on the bridge, a form of “through-bond”
coupling.279,280

It is a bit difficult to see how eq 45 can be computed in the
context of CDFT. The exact expression is writen in terms of the
wave functions for donor and acceptor, but KS theory only gives
us the density of each state. The KS wave functions, |Φæ, are
fictitious determinants that are constructed to give the correct
density. Hence, in practice we need some approximate (but
hopefully accurate) prescription for computing the coupling
betwen two CDFT states. The most common prescription for
this task was provided in ref 54. Here, we note that if the diabatic
states are defined by constraints, then neither of the exact wave
functions, |Ψiæ, is an eigenstate of the Hamiltonian. Rather they
are eigenstates of Ĥ plus the relevant constraining potential
Viwi(r):

½Ĥ þ ViwiðrÞ�jΨiæ ¼ FijΨiæ ð46Þ
We can therefore manipulate eq 45 to read:

HAB ¼ ÆΨ1jĤjΨ2æ ð47Þ

¼ Ψ1

�����Ĥ þ V1ŵ1ðrÞ þ Ĥ þ V2ŵ2ðrÞ
2

� V1ŵ1ðrÞ þ V2ŵ2ðrÞ
2

�����Ψ2

* +

ð48Þ

¼ Ψ1

�����F1 þ F2
2

� V1ŵ1ðrÞ þ V2ŵ2ðrÞ
2

�����Ψ2

* +
ð49Þ

¼ F1 þ F2
2

S12 � Ψ1

�����V1ŵ1ðrÞ þ V2ŵ2ðrÞ
2

�����Ψ2

* +
ð50Þ

Thus, the coupling only requires the free energies Fi (introduced
in eq 26 in section 2), the overlap between the states, and the
matrix elements of a one-electron potential between the states.
This is certainly simpler than the many electron matrix element
we started with, but it still requires the (unknown) wave
functions |Ψiæ. Hence, at this point we approximate the true
wave functions by their KS surrogates (|Ψiæ≈ |Φiæ) to arrive at a
formula for the CDFT diabatic coupling:

HAB ≈
F1 þ F2

2
SKS12 � Φ1

�����V1ŵ1ðrÞ þ V2ŵ2ðrÞ
2

�����Φ2

* +

ð51Þ
Approximating the exact wave function with the appropriate KS
determinant is an uncontrolled approximation and it must be
tested in practice. As a whole the approximation holds up well,
but it is obvious that a more rigorous definition of the diabatic
coupling in CDFT would be a significant discovery. For now, we
will move forward with the approximation of eq 51.

In the framework of CDFT, the diabatic states |Φ1æ and |Φ2æ
are not mutually orthogonal, so we must perform an orthogo-
nalization procedure in order to produce a physically meaningful
coupling Hab (note the use of lower case indices for orthogonal
states). Toward this end, we may begin with the Hamiltonian in
the nonorthogonal basis and transform it into an orthogonal
basis via the symmetric L€owdin orthogonalization.47 Putting

H0 ¼
H11 H12 3 3 3 H1N

H21 H22 H2N

l ⋱ l
HN1 HN2 3 3 3 HNN

0
BBBB@

1
CCCCA ð52Þ

and

S ¼
1 S12 3 3 3 S1N
S21 1 S2N
l ⋱ l

SN1 SN2 3 3 3 1

0
BBBB@

1
CCCCA ð53Þ

the desired Hamiltonian in the orthogonal basis is then

H ¼ S�1=2H0S�1=2 ð54Þ
The final couplings Hab are the elements of the H matrix, [H]ab.
The orthogonalization procedure can sometimes induce drastic
changes in the nature of the basis states; e.g., when two of the
nonorthogonal basis states are symmetric with respect to a swap
of spin indices, they orthogonalize to a singlet and a triplet state.
Since the triplet state has essentially zero coupling to the other
singlet states produced, this phenomenon is quite easy to
recognize. In any case, at the end of this orthogonalization
process, we have obtained electronic couplings Hab in an ortho-
gonal diabatic basis, starting from the nonorthogonal diabatic
states and their couplings HAB. Unfortunately, this route for
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orthogonalization is not unique, and other techniques can be
used.281 The ambiguity here is tied to the fact that diabatic states
are themselves nonunique. The differences between different
orthogonalized bases is expected to be rather small in physical
applications, and the differences vanish entirely when the cou-
plings are used in a CI approach (as discussed in the next
section). However, the somewhat fuzzy nature of Hab needs to
be kept in mind as we discuss its application.

5.2. Electron Transfer Couplings and Energy Gaps
One of the most important applications of the diabatic

coupling is to electron transfer, as Hab plays an important role
in computing the Marcus rate (eq 33). As such, there is a long
(and growing) list of alternative schemes for computing the
coupling, and we must briefly review a few such expressions
before going on to evaluate the CDFT coupling.

Perhaps the most natural way to obtain Hab is to try to extract
it from the adiabatic energies of the system. An example of this is
given in Figure 25, which shows two generic diabatic energy
curves and illustrates qualitatively how Hab splits the two diabats
to obtain two adiabats.

It is easy to quanify this relationship: at the crossing point, the
diabatic states are degenerate and the Hamiltonian is of the form

H ¼ E Hab

Hab E

 !
ð55Þ

which has eigenvalues E( = E ( Hab. Clearly, the difference
between the eigenvalues is twice the off-diagonal element, so the
coupling element is determined as

Hab ¼ EðS1Þ � EðS0Þ
2

ð56Þ

Thus, for reactions where the two-state approximation is valid,
approximations to Hab may be obtained solely from adiabatic
energies. At least one of the adiabatic energies is necessarily an
excited state energy; it can be approximated using Koopmans’
theorem282 or TDDFT excitation energies,283 as well as higher-
order wave-function-based methods.284 This energy-gap method
bears a striking resemblance to how magnetic exchange cou-
plings in transition-metal complexes are computed from the
energies of the high-spin and broken symmetry states in
section 4.

Of course, eq 56 only gives us one value of the coupling—the
value at the crossing point. If diabatic state energies are also
available in addition to the ground-state energy, we can use that
information to compute the coupling at an arbitrary point along
the reaction coordinate. One of the simplest such coupling
prescriptions relies on the analytical relationship between the
diabatic energies, couplings, and the adiabatic energies for a two-
state system; when the diabatic states are orthogonal, the
coupling between diabats is equal to

jHabj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� EAÞðE� EBÞ

p
ð57Þ

where E is the ground state energy and EA and EB are the two
diabatic energies. The orthogonality assumption can also be
relaxed by including the overlap element S = SAB giving

jHabj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE� EAÞðE� EBÞ

p þ SððE� EAÞ þ ðE� EBÞÞ=2
1� S2

ð58Þ

where once again a L€owdin orthogonalization has been per-
formed to obtain Hab.

274 We henceforth refer to eq 58 as the
mixed adiabatic�diabatic coupling, or just the mixed coupling.

Molecular systems have more than two states; however, a two-
state approximation is valid for a multistate system when the two
states considered are energetically well-separated from the other
states. In this case, the (full) conversion between adiabats and
diabats largely preserves the two-state subsystem, and the formulas
which are exact for a two-state system are a good approximation
for the real system.

In what follows, we will see that despite the apparent theore-
tical advantages, these methods all perform quite poorly in con-
junction with DFT, primarily due to SIE.

5.3. Applications
Given the preceding expressions for the coupling, we now

proceed to investigate their accuracy. The square of the electro-
nic coupling is proportional to the rate of transitions between the
two diabatic states via Fermi’s golden rule. When considering
charge transfer between a spatially separated donor and acceptor,
the rate is primarily governed by tunneling, which is expected to
decay exponentially with the separation. Thus, one sanity check
for any coupling prescription is to verify that it decays exponen-
tially at large separations. The first study of the CDFT coupling
(eq 51) found this decay to be present for a prototypical
homonuclear diatomic hole transfer system, Zn2

+, shown in
Figure 26.

The behavior was tested for two different choices of the charge
prescription underlying CDFT; both schemes yield similar decay
factors, but the Becke weight population scheme gives consis-
tently smaller couplings. Figure 31 will show that the Becke
scheme gives better agreement with other schemes that have
been used as reference values, in line with our expectation that
real-space population schemes (like Becke’s) are more reliable
than AO-based ones (like L€owdin’s). In any case, this initial
application supports the validity of the approximations made to
obtain eq 51.

Going a step further, recent theoretical work has used CDFT
couplings from eq 51 to classify bridged ferrocene systems as
exhibiting through-space coupling or through-bond coupling
for a wide variety of bridge moieties, as illustrated in Figure 27.270

Figure 25. Schematic of the interplay of diabatic states, adiabatic states,
and the diabatic coupling. Where the diabatic states cross, the adiabatic
states avoid one another and the gap between the two adiabats is given
by twice the diabatic coupling (Hab). Far from the crossing, the diabats
and adiabats are very similar.
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As the data in Table 8 show, CDFT predicts the qualitatively
correct trend of exponential decay of the coupling with
distance, while comparison with experimental results suggests
that the CDFT couplings only slightly overestimate the coupl-
ings.270 These results argue strongly for the accuracy and efficiency
of the CDFT coupling.

At the same time, these mixed valence compounds expose
significant problems with the energy gap formulas, as also shown
in Table 8. Using either the HOMO�LUMO energy gap or the
mixed diabatic coupling gives a gross overestimate of the overall
coupling and the wrong distance dependence—the coupling
either remains flat or increases with increasing separation! These
errors are particularly noticeable for the saturated bridges, where
the CDFT coupling decays to almost nothing for the longest (12-
carbon) bridge, but the other formulas predict unphysically large
couplings. The conjugated bridges (which are expected to have
some delocalization) are not immune to this form of error, with
the values from the mixed coupling formula (eq 58) growing
larger as the bridge length increases, while the actual couplings
should decrease with increasing separation. Figure 27 gives
insight into why the energy gap methods fail.

For ferrocenes separated by a 12-carbon saturated bridge, the
HOMO and LUMO are both fully delocalized (unphysically)
over the metal centers, which is problematic for functionals with
significant SIE. Meanwhile, for long unsaturated bridges, the
HOMO and LUMO actually have more amplitude on the bridge
than on the donor and acceptor, which is almost certainly incorrect.
Indeed, because theHOMOand LUMOare always delocalized, the
adiabatic ground-state energy is too low (because of reduced self-
interaction error), which causes the mixed diabatic coupling to be
too large and the HOMO�LUMO gap to be artificially increased
(the so-called band gap problem285), leading to large couplings from
the HOMO�LUMO gap as well.

The CDFT prescription for the coupling avoids these errors
by using the diabatic states directly. The degrees of localization
and self-interaction in both diabatic states are the same, and thus
these terms largely cancel when taking energy differences invol-
ving just those diabatic states. The above results show that the
CDFT coupling (eq 51) behaves in the ways expected for an
electronic coupling element, in contrast to energy-gap-based

methods for obtaining diabatic couplings. This result is perhaps a
bit surprising in that the less accurate method (i.e., the energy gap
prescription) is more rigorous. This discrepancy is primarily
attributable to the limitations of commonly used functionals: it
appears that the energy-gap coupling is simply more sensitive to
errors in the functional than the total energy is.

It is important to note that the diabatic picture does not always
predict an exponential decay; it also lends itself to the Condon
approximation that the coupling is insensitive to (transverse)
nuclear motion (e.g., relaxation within the donor or acceptor
fragment).286 The availability of CDFT couplings permits in-
vestigation of the validity of this approximation for intramole-
cular electron transfer, by computing the coupling element as a
function of the reaction coordinate. Table 9 shows the variation
in the electronic coupling along the reaction coordinate for intra-
molecular charge transfer in the mixed-valence tetrathiafulvalene�
diquinone (Q�TTF�Q) anion discussed in section 3. In the
anion, the excess electron localizes on one of the quinone
rings, causing some out-of-plane distortion of the structure.
Here, as the reaction coordinate moves from q = 1 to q = �1
the conformation changes from “electron on left” to “electron
on right”. As the data make clear, the electronic coupling
changes very little over the full domain of the reaction
coordinate, showing that the Condon approximation is rea-
sonable for this system.

Figure 27. HOMO and LUMO surfaces for series of ferrocene systems
with different-length bridges: (a) saturated (CH2)n linkages and (b)
monounsaturated conjugated linkages. The delocalization of the frontier
orbitals is chemically unphysical in part a, leading to couplings that are
too large. Reproduced with permission from ref 270. Copyright 2010
American Chemical Society.

Figure 26. Electronic coupling matrix element |Hab| for hole transfer in
Zn2

+ versus Zn�Zn distance. Straight lines represent best linear fits;
squares are the couplings from using L€owdin population and triangles
the couplings from using the Becke weight population. Reproduced with
permission from ref 54. Copyright 2006 American Institute of Physics.
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5.4. Exciton-CT Coupling
CDFT provides diabatic electronic states, and couplings

between them. In some cases, though, it is of interest to
compute an electronic coupling between a CDFT diabatic state
and an excited state obtained from other means. For example,
in photovoltaic cells, one is typically interested in charge separa-
tion emanating from an excited state of the system.268 These
localized, charge-neutral, excited states are typically referred to
as “excitons”. Similarly, in light-emitting devices, one is interested
in charge recombination events that form excitons, which
subsequently luminesce. In these situations, the Marcus rate
expression (eq 33) still applies, but either the “donor” or
“acceptor” state is itself an excited state of the system—it cannot
be written as the ground state of the system in an alternate
potential and is thus not accessible via CDFT. Hence, in
computing the Hab coupling element, eq 51 cannot be used,
because one of the states is not a constrained state. In most cases,
the exciton state is well-described by TDDFT, while the charge-
separated state is well described by CDFT (as illustrated above).
We thus require a formula for the coupling that applies when one
of the states derives from CDFT while the second comes
from TDDFT.

In order to accomplish this goal, we need to be able to
associate an approximate wave function with a TDDFT excited
state. Just as was the case for KS-DFT, this is problematic because
TDDFT only provides access to the excited state density and not
the excited state wave function. However, each linear-response
TDDFT state can be associated with a sum of Slater determi-
nants

jΨexæ ¼ ∑
ia

ci
ajΨi

aæ ð59Þ

The sum runs over singly excited states, withΨi
a being the Slater

determinant obtained by taking the ground-state KS wave
function and replacing occupied orbital i with virtual orbital a.
The coefficients cia = xia + yia are simply related to the canonical x
and y TDDFT amplitudes.287 This form for the TDDFT wave
function reproduces the exact TDDFT transition density, and so
in this sense can be thought of as the “wave function” for the
excited state. Inserting this |Ψexæ into the CDFT coupling
formula, the coupling element then involves sums of overlaps

and constraint potential matrix elements between the CDFT
state and the singly excited determinants which comprise |Ψexæ.

However, the computational efficiency of the direct route is
rather poor: with a sum over O(N2) singly excited states and an
O(N3) coupling calculation for each, the overall complexity is
O(N5), which is impractical for large systems. However, the
scaling can be reduced to O(N3) by using a Thouless rotation288

to convert the sum over single excitations into a sum of just two
determinants. The core idea of the Thouless rotation is to
convert the representation of the exciton from a sum of Nocc 3
Nvirt singly excited determinants into a difference of two Slater
determinants made of slightly perturbed occupied orbitals.
Putting

ϕið ( EÞ � ϕi ( E ∑
a
ci
aϕa ð60Þ

as these perturbed occupied orbitals, we build the Slater deter-
minants Φ((ɛ):

Φð ( EÞ ¼ Φ ( E ∑
ia

ci
aΦi

a þ OðE2Þ ð61Þ

The TDDFT state is then written as

jΨexæ ¼ ∑
ia

ci
aΦi

a ¼ lim
E f 0

Φð þ EÞ �Φð � EÞ
2E

� �
ð62Þ

with only two Slater determinants. This procedure is discussed in
more detail in ref 267.

These coupling elements are still in the basis of the TDDFT
and CDFT states, which are in general nonorthogonal (as the
different constrained states were in section 5.1). As before, a
L€owdin transformation can convert the states into an orthogonal
basis. However, for this system, there is an alternate method
available which definitively preserves the labeling of states as
exciton or CT. The CDFT population operator ŵ—used to
define the constraint potential Vŵ—provides a measure of the
degree of charge-transfer, and the eigenstates of ŵ form an
orthogonal basis for the Hamiltonian.55 The matrix elements
of ŵ were used in computing the couplings (eq 51), so there is
minimal extra work in computing them. Solving

WC ¼ nSC ð63Þ

Table 8. Coupling Elements for Bridged Diferrocene Sys-
tems, in kcal/mol a,b

Hab

Fe�bridge�Fe+
from HOMO�
LUMO gap

from

eq 58

from

CDFT

Fe�Fe+ 16.6 6.8 3.26

Fe�CH2�CH2�Fe+ 5.5 2.4 0.88

Fe�(CH2�CH2)3�Fe+ 2.8 13.3 0.15

Fe�(CH2�CH2)6�Fe+ 1.7 13.9 0.03

Fe�CHdCH�Fe+ 14.4 13.8 3.22

Fe�(CHdCH)3�Fe+ 13.6 18.9 3.42

Fe�(CHdCH)6�Fe+ 14.2 21.5 1.02
aCDFT couplings are more physical than those computed using the
ground-state DFT energy, which suffers from delocalization error. bData
from ref 270.

Table 9. Electronic Coupling Element |Hab| (kcal/mol) for
Q�TTF�Q Anion as a Function of the Charge-Transfer
Reaction Coordinatea,b

q(() |Hab|

1.0 2.89

0.8 2.95

0.6 3.00

0.4 3.03

0.2 3.05

0.0 3.06

�0.2 3.05

�0.4 3.03

�0.6 3.00

�0.8 2.95

�1.0 2.89
a q = �1 corresponds to charge fully localized on the left quinone and
q = 1 to charge localized on the right. bData from ref 54.
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for the state vectors C which diagonalize the weight matrixW of
ŵ in the nonorthogonal basis of exciton and CT states yields the
orthogonal eigenstates. Transforming the Hamiltonian (and thus
the couplings) into this new basis gives the orthogonalized
couplings Hab. The eigenvalues n of the weight matrix are also
significant, directly assessing the degree of charge transfer in the
orthogonal diabats, making clear the distinction between charge-
transfer and local exciton states.

As a simple example, the coupling between local exciton states
and a charge transfer state has been studied for the triphenylene 3 3 3
1,3,5-trinitrobenzene system as a function of intermolecular
separation.267 These two molecules were chosen as typical
representatives of an organic donor/acceptor interface, where
triphenylene acts as the donor and 1,3,5-trinitrobenzene the
acceptor. As such, there is a low lying donorfacceptor CT
state that crosses three different localized exciton states. From
the TDDFT calculations, the desired exciton states are easily
identified by examining the attachment and detachment densi-
ties, as shown in Figure 28. Exciton states have attachment and
detachment densities localized on a single molecule, whereas CT
states have the attachment and detachment densities on different
molecules. Choosing only the three lowest exciton states from
the TDDFT calculation and computing the coupling of each
exciton to the CT state gives the results in Figure 29. The strong
coupling of the third excited state to the charge-transfer state
indicates that it is likely to be a significant contributor to charge
separation for this system, whereas the first excited state has a
much smaller coupling and should be less important, showing
that it is not always sufficient to only consider the first exciton
state in assessing the performance of OLED or photovoltaic
systems. For this organic heterodimer, the nonadiabatic transi-
tion from local exciton state to diabatic charge-transfer state
provides insight into the application of the materials in photo-
electronics, providing a mechanism by which to understand the
relaxation of a photoexcitation into free carriers or the reverse
process.267

5.5. Alternative Coupling Methods
The desire to study chemistry in terms of diabatic states and

the couplings between them is far from a new idea, being well-
understood for several decades at least.289�292 Strictly diabatic
states that diagonalize the nuclear momentum coupling vector
are not possible in general,291 but this has not prevented a
proliferation of approximate routes to diabatic states over the
years.157�159,249�266,293�295 In this section, we briefly describe a

few often-used approaches to diabatic couplings in order to place
the CDFT coupling formula in context.

One of the earliest methods used to obtain approximate
diabatic states relies on broken-symmetry (BS) solutions of the
SCF equations.296,297 As discussed in section 4.2, when treating
magnetic or diradical systems, unrestricted KS calculations will
sometimes converge to solutions in which the α and β orbitals
differ. These states are not spin eigenstates (hence the broken
symmetry moniker), but perhaps more importantly, they typi-
cally involve localization of spin and/or charge on certain parts of
the molecule. These BS states can thus play a role very similar to
CDFT states. The interpretation of BS states as diabats is
tenuous, as it is not even possible to be certain that a given
system will have BS KS solutions at all. For example, in the classic
case of H2 dissociation, the KS equations have no BS solutions at
short bond lengths. However, past a critical distance (the
Coulson�Fischer point) BS solutions appear and are, in fact,
energetically lower than the spin-restricted solutions. In this
sense, CDFT states should be thought of as a more reliable BS
state, because one can always generate the physically desired state
using a constraint, while it is not clear if the same state will exist in
the BS approach.

Nonetheless, the orbitals (and thus wave functions) of these
BS states can be used to compute couplingmatrix elements of the
Hamiltonian, as was done in the early work of Farazdel et al. for
intramolecular electron transfer using BS Hartree�Fock
states.296 Below, we will summarize their results, noting that
the relevant BS determinants can come either from Hartree�
Fock or Kohn�Sham calculations. For BS states, one directly
computes the electronic coupling matrix HAB = ÆΨA|H|ΨBæ
including both the one- and two-electron contributions. The
algebra for these matrix elements in terms of nonorthogonal
determinants can be worked out with complexity similar to a
DFT energy evaluation.298 Once again, the couplings need to be
orthogonalized to obtain the physical coupling Hab, and this can
be done either using the L€owdin prescription or by finding the
eigenvalues of the Hamiltonian in the diabatic basis and using the
energy gap formula (eq 57). We note that when this direct
coupling formula is used for KS states, one is once again implicitly

Figure 28. Attachment/detachment density plots for triphenylene 3 3 3
1,3,5-trinitrobenzene that show (a) nonlocal/CT and (b) localized
exciton electron densities. The red (green) regions have excess
(reduced) electron density compared to the ground state. Reproduced
with permission from ref 267. Copyright 2011 American Chemical
Society.

Figure 29. The electronic coupling between the CDFT CT state and
three locally excited TDDFT states for triphenylene 3 3 3 1,3,5-trinitro-
benzene. The coupling to the first excited state is quite small, and the
coupling to the third shows strong variation with separation on this
length scale. All the couplings tend to zero at large separations.
Reproduced with permission from ref 267. Copyright 2011 American
Chemical Society.
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assuming the KS determinant is the true diabatic wave function,
which is in general not justified. Nonetheless, the direct coupling
formula and the CDFT coupling capture much of the same
physics. Consider the direct coupling between CDFT KS states
(HAB = ÆΦ|Ĥ|ΦBæ) compared against CDFT couplings from
eq 51. For the simple molecule LiH, Figure 30 compares the
behavior of these two prescriptions for the coupling between the
orthogonalized ionic (Li+H�) and neutral states.299 The cou-
plings are clearly in qualitative agreement and exhibit the same
exponential decay behavior.

Directly computing the coupling element between diabatic
states is far from a unique route to couplings; on the other end of
the spectrum are methods that compute diabatic couplings
directly from a set of adiabatic states. There are a large number
of such methods250,253,254,258,259,263,264 of which one deserves
special discussion at present: the generalized Mulliken�Hush
(GMH) prescription.158,261 GMH is widely used for electron
transfer problems, and it is often taken as the definitive reference
method for computing diabatic couplings (see Figure 31).
We therefore spend a bit of time discussing this alternative. The
core idea of the GMH method is to define diabatic states as the
eigenstates of the dipole moment operator in the basis of the low-
lying adiabatic states. This makes physical sense: the eigenvalues
of the dipole will be the extreme values and the desired neutral
and CT states will have very small and very large dipole mom-
ents, respecively. Thus, given a set ofN adiabatic states (e.g., from
CASSCF theory), GMH first constructs matrix elements of the
dipole operator and then diagonalizes this matrix in the basis of
the adiabatic states.158,261 GMH also allows for multiple diabats
to have charge localized on a given site, which are forced to be
locally adiabatic with respect to each other, as the assumption of
zero transition dipole moment is not reasonable in that case.261

The GMH diabats are automatically orthogonal, so the diabatic
coupling is obtained by transforming the diagonal adiabatic
Hamiltonian into the basis of dipole eigenstates; the physical
coupling(s), Hab, are just the off-diagonal elements of the
transformed Hamiltonian. For two-state symmetric systems,
GMH reproduces the energy gap method.

The GMH and CDFT couplings are very different in execu-
tion: the former requires some pre-existing route to adiabatic
excited states (e.g., TDDFT) while the latter only requires

ground state calculations in alternative potentials. In GMH,
diabatic states and their couplings are deduced from the adiabats,
while in CDFT diabatic states are constructed directly. Finally, in
GMH there is a clear route toward exact diabatic couplings (by
improving the adiabatic excited states), while in the latter the
route toward exact couplings is somewhat murky. The primary
reason GMH (and related methods) deserves mention here is
that, like CDFT, GMH defines the diabatic states with relation to
an operator. That is to say, in GMHone chooses diabatic states as
eigenstates of the dipole moment, much as in CDFT one chooses
diabats as states with defined charge. Thus, while the technical
operations involved are quite distinct, the two methods share a
common picture of diabatic states as being “special” with respect
to some physical operator.

When producing multiple adiabatic energies is too expensive,
cheaper alternatives to coupling elements are available. Making
the approximation that only the HOMO of the donor and the
LUMO of the acceptor contribute to the coupling drastically
simplifies the computation of a direct coupling element between
diabats: the coupling is then computed as the matrix element
between those two orbitals; this is known as the fragment orbital
(FO) method. Using single orbitals necessitates treating the
donor and acceptor as independent systems (as otherwise the
distinction between donor and acceptor orbitals is dubious at
best), so they cannot respond to each others’ environment—all
information about polarization and intermolecular interactions is
thus lost. In practice, the LUMO of the acceptor is computed as
the HOMOof the reduced acceptor, so that occupied orbitals are
used on both sides of the matrix element.277 By treating donor
and acceptor as separate systems, it is easy to enforce the charge
(spin) localization involved in the reactant and product states—
the component subsystems are just systems with (half-)integer
charge (spin). Difficulties arise from the use of separate systems,
though, if there are bonds between donor and acceptor or if there
is significant mutual polarization between donor and acceptor.277

Figure 31 shows the behavior of the FO�DFT coupling as a
function of internuclear separation for the zinc dimer cation
system from section 5.3, as well as CDFT couplings and the
GMH method described below. The FO�DFT method has a
noticeably different exponential decay factor than the other
methods (as seen by the slope on the graph), as well as a
substantially smaller coupling magnitude (up to a factor of 2,

Figure 30. The coupling (in eV) between the lowest singlet states of
LiH, calculated using the standard CDFT formula (eq 51, “CDFT
coupling”) and by directly taking the matrix element of the Hamiltonian
(“direct”).

Figure 31. GMH, CDFT (plane-wave), CDFT (AO), and FO�DFT
methods compared for diabatic coupling elements decaying with
separation for the zinc dimer cation. Reproduced with permission from
ref 277. Copyright 2010 American Institute of Physics.
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being more pronounced at smaller separations). This discre-
pancy is attributed to the lack of polarization in the FO�DFT
orbitals, as the HOMO of the CDFT system is found to be
slightly polarized toward the acceptor.277

As in Figure 31, the GMH method is frequently used as a
reference for comparison with other routes to diabatic electronic
coupling elements. In the data presented there, the decay
constants for zinc dimer cation placed the GMH value between
the FO�DFT and CDFT-determined decay constants, and the
difference in the magnitude of the coupling between GMH and
CDFT is attributable to the differing definitions of diabatic
states.277 Nonetheless, GMH calculations require some care to
obtain meaningful results, as they take as input multiple adiabatic
states (wave functions), and the determination of adiabatic
excited states is much less robust than the existing treatments
for adiabatic ground states. For example, the commonly used
(for small systems) CASSCF approach is sensitive to the choice
of active space and the number of states included in the state
averaging;300,301 furthermore, the GMH method can require a
determination of which diabats are localized on the same site, a
decision which is hard to make programmatically. Many of these
difficulties can be overcome by defining the diabatic states as
many-electron extensions of Boys localization.250 This approach
allows a GMH-like scheme to be applied transparently to large
active spaces and multiple fragments.

Yet another alternate route from nonorthogonal fragment or
CDFT states to diabatic couplings is taken in the work of
Migliore,302,303 which uses the adiabatic ground state to avoid
directly computing coupling elements. This is similar in spirit to
eq 58 but avoids using the ground-state energy (which is known
to be unreliable for DFT transition states). Given diabatic states
A and B (assuming a two-state framework), some algebraic
manipulation shows that the coupling between the states is
related to their overlap (SAB), the energy gap between the
diabatic states (ΔEAB = EA � EB) and the overlap of each diabat
with the ground state (a t ÆΨA|Ψ0æ and b t ÆΨB|Ψ0æ) via303

Hab ¼
����� ab
a2 � b2

ΔEAB 1 þ a2 þ b2

2ab

 !
1

1� SAB2

����� ð64Þ

Results for this coupling formula as applied to hole transfer in a
π-stack of two DNA bases show that the coupling is relatively
independent of basis set size, and compares reasonably with
GMH and CASSCF-based methods.303 Effectively, by replacing
the adiabatic energy in eq 58 with the overlaps a and b (which
contain the same information) one arrives at an expression that
appears to be somewhat less sensitive to SIE effects. There are
reasons to suspect that eq 64 is not completely immune to SIE,
however; note that for the mixed valence systems in Figure 27
a ≈ b so that a2 � b2 ≈ 0 and the coupling of eq 64 becomes
potentially divergent for nonvanishingΔEAB. Thus, eq 64 should
be used with some caution.

5.6. Illustrations
5.6.1. Electron Transfer. One of the most obvious uses of

the diabatic coupling is in the prediction of electron transfer rates,
in accord with the Marcus rate expression of eq 33. For example,
we can return to the FAAQ dyad discussed in section 3.3. There,
we saw that CDFT molecular dynamics in explicit solvent was
capable of correctly describing the free energy landscape for
charge recombination from the CT excited state (FA+�AQ�) to
the ground state, including the accurate prediction of the driving

force (ΔG) and reorganization energy (λ). In order to complete
the Marcus picture, then, we need the diabatic coupling Hab

between the states, which is easily obtained using eq 51. How-
ever, since the reaction is occurring in a fluctuating environment,
we cannot speak of only a single value ofHab—rather, we need to
speak of the distribution ofHab values in the ensemble of reactant
and product configurations. To put it a different way, we do not
want to make the Condon approximation at the outset. If there
are significant variations in the coupling as the reaction pro-
gresses, we want to see this, which requires recomputing the
coupling at every snapshot of the simulation. This can be done
and results in the data in Table 10. Several things are clear from
the data. First, the Condon approximation is reasonably accurate
in these simulations, with the coupling fluctuating by only
10�20% for a given state. This is reassuring, as it means the
Marcus picture of ET being driven by energy gap fluctuations
(rather than fluctuations in Hab) is likely valid for this molecule.
Second, it is clear that the presence of solvent reduces the
magnitude of the coupling, sometimes significantly. This point
is important because it calls into question the standard pro-
tocol of using gas-phase couplings in condensed phase simula-
tions.249,304 Finally, it is interesting to note that the couplings in
the neutral ground state and the CT excited state are different,
suggesting that the Hab values for charge separation are some-
what different than those for charge recombination.
Overall, the couplings above overestimate the experimentally

deduced couplings by about 5-fold, which is not terrible agree-
ment given the exponential sensitivty ofHab to distance. Moving
forward, we expect to see significant advances in the under-
standing of condensed-phase ET rates as CDFT becomes more
widely applied.
5.6.2. Triplet Energy Transfer. One can use diabatic states

to discuss energy transfer as well as electron transfer. In
particular, CDFT offers a clean description of triplet excitation
energy transfer (TEET). TEET is thought to play a role in
photoprotection of the photosynthetic light-harvesting complex;
triplet excitations on chlorin moieties are efficiently transferred
to neighboring carotenoids, preventing oxidative damage.305,306

In general, to predict the rate of TEET using the Marcus
expression (eq 33) one requires reactant (product) diabatic
states where the triplet is localized on the donor (acceptor).
These diabatic states are readily accessible in CDFT by con-
straining the spin, as discussed in section 4. From this point, the
manipulations are strictly analogous to the case of electron
transfer—one can define a driving force, reorganization energy,
and coupling term—and for the present we will focus on the
coupling. The usual CDFT coupling formula of eq 51 applies to

Table 10. Mean Electronic Couplings and Deviations for the
Neutral and CTConfigurations of FAAQ in theGas Phase and
in DMSO Solutiona,b

configurations ÆHabæ σH

Gas Phase

neutral 0.90 0.15

CT 0.73 0.18

DMSO

neutral 0.61 0.12

CT 0.25 0.06
a Energies in eV. bData from ref 188.
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TEET, as do the approximate methods of eqs 57 and 58. Of
course, the adiabatic state used for the triplet system will be the
lowest triplet state, but otherwise, the manipulations are strictly
analogous.274,307 For consistency with the literature, we refer to
the TEET coupling from eq 56 as the “splitting method” and also
use the mixed coupling of eq 58. Figure 32 shows the couplings
computed by these methods for a stacked pair of formaldehyde
molecules. Results for the mixed coupling applied to CHF states
are notably absent from the plot, as these numbers are much
larger than those of the other methods, starting at 3 eV (not meV)
and rising to 5 eV as the distance increases! The CDFT mixed
coupling results (shown) are also nonphysical, with the coupling
not decaying to zero at infinite separation (the singularity is just
the sign of the coupling changing, on the log scale). The
enormous errors for this model are consistent with the poor
behavior seen when using the energy gap expression for electron
transfer (cf. Figure 27). For TEET, the unphysical results can be
closely tied to fractional spin error, analogous to the fractional
charge error frequently discussed in the context of DFT’s self-
interaction error.307 By contrast, the direct methods for comput-
ing the coupling (CDFT and BS) are successful at producing
couplings of the proper magnitude and with the proper expo-
nential decay as a function of distance. In particular, for PBE the
CDFT results very closely parallel the splitting results, which are
equivalent to the GMH predictions for this case.
5.6.3. Charge Transport in Organic Semiconductors.

Organic semiconductors (OSCs) are a promising class of new
materials. In anOLEDdevice, they can be used as the active element
in thin, efficient, and flexible displays.308 In a photovoltaic cell,

they can be used as inexpensive, large area elements for convert-
ing solar energy into useful electricity.309 In both of these
applications, the ability of the material to transport charge
(electrons and/or holes) is crucial to device performance, and
improving the charge mobilities in OSCs is an ongoing area of
research.310 When used in conjunction with QM/MM simula-
tions, CDFT is an extremely promising tool for studying charge
transport in these soft, amorphous systems, as illustrated in
Figure 33 for the particular example of a semicrystalline OSC
composed of tris(8-hydroxyquinolinato)aluminum (Alq3).

163

On a large length scale (e.g., tens of nanometers) the structure
of the material is modeled using molecular mechanics. One then
selects a few (e.g., one or two) molecules from the solid and
performs QM/MM calculations to determine the desired param-
eters (e.g., exciton energy, reorganization energy, coupling,...).
Finally, one repeats this process hundreds or thousands of times
at thermally sampled configurations to obtain ensemble averages.
In this manner, CDFT combined with QM/MM simulations
provides a means to describe electron dynamics in complex
environments at a moderate computational cost.
Charge transport in these materials is thought to proceed via a

“hopping”mechanism. Basically, one envisions mesoscopic diffusion
arising from a series of electron-transfer reactions between nearby
molecules (or even within molecules, in the case of polymers).
Each of these electron transfer events is governed by the Marcus
rate expression, and this rate in turn is controlled by the
electronic coupling. Thus, for electron (hole) transfer, we desire
coupling elements of the form ÆA�A|Ĥ|AA�æ (ÆA+A|Ĥ|AA+æ),
where At Alq3 in this case. Since CDFT is used to localize the
carrier on the appropriate molecule, eq 51 applies directly to
determine these couplings. Applying this prescription to com-
pute electron and hole transfer couplings in Alq3 results in the
distributions shown in Figure 34.163 Here, the couplings are
distinguished by the approximate lattice vector along which
transfer occurs. There is clear separation between the different
lattice vectors, indicating that over the course of the simulation
(several nanoseconds) a given pair of molecules tends to retain
the same relative orientation. The latter observation is consistent
with the known glassy behavior of most OSCs. The second
obvious feature is that electron transport accounts for most of the
stronger couplings, with the holes being clustered more densely
at smaller couplings. The existence of very large couplings
suggests that electron transfer (and thus electron transport)
should bemore facile than hole transfer (and thus hole transport)
in Alq3. This prediction is consistent with the experiments, which

Figure 32. Triplet energy transfer coupling elements for stacked
formaldehyde molecules using several different methods. (a) HF, with
the coupling between broken symmetry states, CHF states, and the
splitting method as applied to CIS excited-state energies. (b) PBE, with
the CDFT coupling, mixed coupling, and splitting method as applied to
TDDFT excited states. Adapted with permission from ref 274. Copy-
right 2010 American Chemical Society.

Figure 33. Cartoon illustration of the QM/MM method. Left: many
unit cells of the bulk material form the MM region. Center: A small QM
region is selected within the simulation box. Right: The electronic
structure of the QM region in the electrostatic environment of the
surrounding molecules. Reproduced with permission from ref 163.
Copyright 2010 American Chemical Society.
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find the electron mobility in Alq3 is 100 times as large as the hole
mobility.310 Indeed, the electron couplings are large enough to
suggest that electron transport might occur via delocalized states
(bandlike transport), which would represent a fundamental shift
in the understanding of this material.
The simulations above on Alq3 are illustrative of how CDFT

QM/MM can be used in OSCs, but really only represent a
foretaste of the capabilities of the method—similar calculations
can be used to evaluate CT state eneries, charge separation and
recombination rates, absorption and emission spectra, and a host
of other important material properties. The main impediment to
progress is the disorder of the systems, which makes computing
the relevant properties time-consuming. But as computational
power increases, it seems certain that simulations of this type will
guide the microscopic understanding of OSCs.

5.7. Future Work
In the solid-state and solution, for charge, singlet, and triplet

energy transfer, diabatic couplings control the flow of charge and
energy between localized states. The results summarized above
suggest that the CDFT formula for this coupling (eq 51) gives an
accurate and computationally reasonable approximation to this
important quantity. However, the situation is far from perfect.

First, it is extremely difficult to get theory and experiment to
agree to better than an order of magnitude for Hab. Sometimes
the theory is too high, sometimes too low, and the couplings tend
to have a worryingly strong dependence on the basis set and the
quality of the underlying wave function. Some prescription that
gives consistent agreement with experiment is clearly desirable.
Furthermore, the coupling between bound charge transfer states
and continuum states is not even available for comparison with
results from scattering experiments; an accurate prescription for
determining these couplings would bring CDFT to a new class of
important physical systems.

Second, there are cases where the CDFT coupling itself
returns unphysical values. In some cases (cf. Table 1) we can
understand these errors as arising from a poor choice of atomic
populations or a catastrophic failure of the underlying functional.
However, occasionally the wave functions look qualitatively
correct and yet still the couping is off by an order of magnitude
or more. It is not clear what causes this unusual behavior.
A fundamental understanding of these issues may involve

decomposing different contributions to the coupling, as has
recently been done for diabatized CIS states.311

Finally, it would be extremely useful to have analytic gradients
of the CDFT coupling (eq 51) as a function of nuclear position.
Among other things, these gradients would allow us to further
explore the validity of the Condon approximation and (in
conjunction with the CDFT-CI method described in the next
section) make it possible to perform excited state molecular
dynamics for low-lying electronic excited states.

The above wish list of future improvements notwithstanding,
the CDFT coupling provides a useful tool for the analysis of
charge and energy transfer in real problems and completes the
diabatic picture that naturally arises from applying density
constraints to the system.

6. PARAMETRIZING MODEL HAMILTONIANS WITH
CDFT

In the previous section, we saw how to treat CDFT states as
diabatic states and compute diabatic couplings between them.
Combined, these allow for construction of a complete diabatic
picture of a system, accounting for the entire electronicHamiltonian,
by mapping the full N-electron system into a (much much
smaller) diabatic basis.55 Condensing the full system into an
easily computed small basis is a classic example of using a model
Hamiltonian to describe a complex system, and in this respectCDFT
shares many features with empirical valence bond theory159,312 and
Van Vleck transformations in multireference theories of correla-
tion.313 Model Hamiltonians also abound in the computational
sciences, with a great variety of functional forms that are each largely
designed for a particular class of physical system: Hubbard314,315

and Pariser�Pople�Parr (PPP) models316,317 for π-conjugated
molecules, LDA+U318 and dynamical mean field theory319 for
localized orbitals in metals, Heisenberg models for magnetic
systems,196 exciton models for photosynthesis.320 When using a
model Hamiltonian form to describe a physical system, it is
usually desirable to use ab initio data to parametrize the model so
as to have a numerical connection with the actual physics.
The relationship between ab initio theory and model form
sometimes grows quite intertwined, as in the ab initio tight
binding method321,322 and dynamical mean-field theory.126

In many cases, the underlying physics captured by a model
Hamiltonian can be probed using CDFT, whether by producing
a particular spin configuration of a magnetic system, adding extra
charge to a single site to probe the Coulomb repulsion, or adding
static correlation to a reaction transition state, or even combina-
tions of these effects. Due to the diverse and varied nature of
both applications and methodology, it is easiest to arrange these
applications by the physical problems they address: charge
hopping and delocalization,323�326 spin systems,230,327,328 strong
correlation,55,135 and electronic excited states.47,329

6.1. Charge Hopping
Broadly speaking, conduction is usually modeled in one of two

ways: by invoking delocalized states, as in the band theory of
metallic conduction,330 or using localized states in the hopping
formalism.331 Both models arise out of the same tight-binding
(TB) model in which electrons occupy fixed sites that have both
an energy ɛ and also a coupling tij to other sites

H ¼ ∑
i
Eic†i ci þ ∑

ij
tijðc†i cj þ c†j ciÞ ð65Þ

Figure 34. The electron and hole coupling distributions for Alq3.
Distributions are shown for nearest neighbors along three different
lattice vectors. The inset shows the effect of smearing the MM charges
from point charges into Gaussian distributions. Reproduced with
permission from ref 163. Copyright 2010 American Chemical Society.
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where the c† and c operators are the standard second-quantized
creation and annihilation operators. Within chemistry, this
model is more commonly referred to as extended H€uckel theory.
The relative magnitudes of the energy and coupling determine
whether hopping or band transport dominates.330When tij/(ɛi� ɛj)
is large, delocalization results; localized “hopping” transport occurs
when tij/(ɛi � ɛj) is small. The latter regime is typically referred
to as Anderson localization.332

Now, the tight binding approximation completely neglects
electron�electron interaction, which will clearly influence
charge transport. The Hubbard Hamiltonian adds the on-site
electron repulsion terms to the TB formula:

H ¼ ∑
i
Eic†i ci þ ∑

ij
tijðc†i cj þ c†j ciÞ

þ ∑
i
Ui
niðni � 1Þ

2
ð66Þ

where ni t ci,α
† ci,α + ci,β

† ci,β. Most notably, this Hubbard model is
the basis for the LDA+U method.333

In the above model Hamiltonians, ɛi and tij are single-particle
terms, with a variety of different routes for approximation from
ab initio data.56,61 In particular, it is quite common to derive
effective values of ɛ and t directly from the KS Hamiltonian.79

Meanwhile, the most reasonable route to the on-site repulsion
term U is provided by CDFT. Specifically, because Ui penalizes
only states where site i is doubly charged, we can easily probe Ui

with CDFT by increasing the charge on the site in question. In
particular, if the Hubbard expression is correct, the dependence
of the change in total energy (ΔE) due to a change in the number
of electrons (ΔNi) should be approximately quadratic:

ΔE ¼ αðΔNiÞ2 þ OððΔNiÞ3Þ ð67Þ
The linear term vanishes irrespective of the approach because of
charge equilibration in the ground state: if dE/dNi was nonzero,
the system could lower its energy by adding (or subtracting)
electrons from the ith site. Thus, both the model Hamiltonian

and an ab initio energy will vary approximately quadratically with
the charge on a given atom. Further, for the Hubbard model, the
magnitude of α will depend strongly on U; large U will tend to
lead to large α. Thus, by comparing ΔE(ΔN) from CDFT
calculations with the corresponding Hubbard results, “ab initio”
values of U can be obtained.

This prcedure is illustrated in Figure 35.323 Here the U
parameters for polyyne are extracted by varying the charge on
one of the carbons. Clearly, the parabolic approximation is
excellent, supporting the use of the Hubbard model for this
linear chain. It is also interesting to note that HF and DFT give
essentially identical model parameters for this system.

One can of course use the same procedure to treat other
molecular wires, such as the technologically more relevant case of
polyacetylene.334,335 Here, the carbon backbone is nonlinear, so
there are three structural isomers to consider: the all-trans form,
as well as the cis�trans and trans�cis isomers, which differ in
whether the long or short bonds are parallel to the molecular axis.
Meider and Springborg computed Hubbard parameters for these
three isomers with the standard parabolic fit to obtain U.324

These simulations went further, exploring whether the long-
range electron�electron interactions neglected in the Hubbard
model were relevant for the polyacetylene systems. To this end,
they also parametrized an extended Hubbard model that adds
Coulomb interactions between nearest-neighbor sites:

H ¼ ∑
i
Eic†i ci þ ∑

ij
tijðc†i cj þ c†j ciÞ

þ ∑
i
Ui
niðni � 1Þ

2
þ ∑

i
Unnniniþ1 ð68Þ

Once again a numerical fit to the total energy as a function of
(constrained) charge variation on a site is used to determine the
values of the Ui and Unn parameters, though as Unn is the
coefficient for a joint variation of population on two adjacent
sites, a two-dimensional fit is needed with diagonal and cross
terms.324 As shown in Table 11, the computed values for Unn are
quite small, suggesting that the Hubbard model is a good
approximate Hamiltonian for polyenes, as well. Interestingly,
though, while the Coulomb repulsion is local, the longer-range
next-nearest-neighbor hopping terms tn,n(2 are large enough to
affect the band structures of the polyacetylene isomers.324

Hubbard-like models are equally useful in understanding bulk
systems, especially for high-Tc superconductors, where the
regions of parameter space that apply to the superconducting
phase are not well-known. CDFT has been applied in this context
to understand the electronic structure of the superconducting
phase of lanthanum cuprates.326 Here, the conduction is thought
to occur between the copper d orbitals with the oxygen p orbitals

Figure 35. Finding U for an idealized carbyne (CtC�CtC�...) by
fitting ∂2E/∂ΔN2 to a parabola. Constrained DFT results from calcula-
tions with LMTOs with rMTS = 1.187 au and bond lengths 2.375 and
2.70 au, in a basis with two sets of s, p, and d functions per atom. Four
carbon atoms were included in the simulation cell, with periodic
boundary conditions. “HF” is for calculations in a finite model system
with eight carbons. Reproduced with permission from ref 323. Copy-
right 1998 Institute of Physics.

Table 11. Hubbard Parameters for the Three Isomers of
Polyacetylene (in eV) a,b

parameter all-trans cis�trans trans�cis

tn,n(1 3.35, 2.88 3.44, 2.59 3.14, 2.86

tn,n(2 �0.25 �0.16 �0.18

U 10.6 10.5 9.9

Unn 0.2 0 1.0
a “Cis�trans” has the short (double) bonds parallel to the polymer axis,
and “trans�cis” has the long (single) bonds parallel to the axis. The two
values given for the nearest-neighbor hopping integrals correspond to
the shorter and longer bonds, respectively. bData from ref 324.
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moderating the conductance either through charging or super-
exchange. Thus, to model this system one requires three
extended Hubbard parameters (Ud, Up, and Udp) which require
various constraint potentials to be applied to copper and oxygen
(specifically using eq 2). For example, applying a fixed potential
shift of 0.2 hartree to the copper d orbitals in a 2� 2 supercell of
La2CuO4 gives the results in Figure 36.326 The d DOS changes
dramatically with the shift, with significant contribution being
pushed past the Fermi level in comparison to the unconstrained
case. Indeed, the integral of the d density is reduced by 0.370
electrons, but 0.144 electrons are gained in the s + p channels,
indicating that some 40% of the screening of the perturbation is
on-site. Capturing the relevant charge response and screening
effects is a delicate matter, but ultimately the authors were able to
find a single set of Hubbard parameters that accurately repro-
duced the CDFT charge fluctuations: Ud = 10.5 eV, Up = 4 eV,
andUpd = 1.2 eV. These parameters in turn place some important
constraints on contemporary models of high-Tc superconductiv-
ity. Approaches of this type are quite closely related to the widely
used LDA+U approach,72 which we consider more closely in
section 7.1.

6.2. Spin Models
The spin states of open-shell systems are perhaps the most

obvious case where a model Hamiltonian could be useful. Here

one has a manifold of nearly degenerate spin states that are
energetically separated from all the other excited states of the
system. It is therefore natural to develop models in which all the
extraneous degrees of freedom (e.g., charges, orbitals, electron
repulsion integrals, etc.) are integrated out and only the relevant
spindegreesof freedomremain.Ofcourse, these reducedHamiltonians
contain parameters that must be determined, and once again
CDFT can play an important role in this process.

As a first example, consider the Heisenberg Hamiltonian
(cf section 4)

Ĥ ¼ � 2 ∑
A < B

JABŜA 3 ŜB ð69Þ

As we have seen, CDFT does an excellent job of determining the
exchange couplings JAB that go into this Hamiltonian, by
accurately predicting the energies of the uncoupled spin states
(also known as Ising states). These uncoupled spin states are not
(in general) eigensolutions of the Hamiltonian at hand, but they
are well-represented by single determinants and have localized
spins so that their energies are well-reproduced by common
functionals. The eigenstates of eq 69, on the other hand, typically
involve linear combinations ofmany uncoupled states. Phrased in
the language of quantum chemistry, the associated wave func-
tions have significant multireference character. As such, they are
poorly represented in traditional DFT, even with constraints.
However, by using CDFT to determine the exchange couplings
and then using the model Hamiltonian to predict the eigenstates,
the energy spectra of complex magnetic systems becomes
accessible.

This methodology has been applied to quite complex systems;
an eight-center spin network for the “ferric wheel” system is
depicted in Figure 37.230 In this case, CDFT was used to
determine the eight low-spin configurations (LS1�LS8), and
these configurations were used to extract the four unique
exchange couplings. Note that the eight spin configurations
shown overdetermine the four symmetry-unique couplings, so
that the derived couplings will depend somewhat on which spin
states are included in the fit. Depending on the configurations
chosen, one obtains couplings in the ranges: �130 g J1 g
�143 cm�1,�14g J2g�21 cm�1,�42g J3g�47 cm�1, and
�10 g J4 g �18 cm�1; these compare quite well to the
experimental ranges �120 g J1 g �140 cm�1, � 20 g J2 g
�25 cm�1,�35g J3g�41 cm�1, and�15g J4g�18 cm�1.
In contrast, the couplings obtained from broken-symmetry DFT
state energies for this complex are qualitatively incorrect, even
producing some couplings of the wrong sign. The accurate
parametrization of this Hamiltonian paves the way for subse-
quent quantummechanicalmodeling of thismolecule—including
looking at quantum tunneling of the magnetization336 and the
dynamics of the molecular spin moment in a magnetic field.248 In
these situations, the accurate quantumwave functionwill involve a
linear expansion in terms of 68 = 1 679 616 spin configurations, a
situation that would be completely hopeless using a single-
configuration method like KS-DFT!

Not all systems are amenable to the Heisenberg Hamiltonian.
In particular, magnetism in metallic systems fails to conform to
the Heisenberg picture because the unpaired spins are not
necessarily localized—instead one often deals with itinerant
magnetism. In general, CDFT is not as amenable to these
problems, but we should highlight one recent application that
succeeded in treating magnetism in FeAl with the help of
CDFT.328 The standard approach for enforcing localization in

Figure 36. The effect of the constraining potential on different channel-
specific partial DOSs. Solid lines represent the partial DOS for various
orbitals of a copper atom in the unconstrained system, and dashed lines
are the partial DOS when a 0.2 hartree potential was applied to the d
channel of that copper atom. Reproduced with permission from ref 326.
Copyright 1989 American Physical Society.
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metals is LDA+U, which we discuss further in section 7.72 Briefly,
LDA+U takes a standard LDA calculation and adds Hubbard U
terms to certain atoms, typically d- or f-block metals. This simple
correction is enough to qualitatively correct the magnetic
behavior of many systems where traditional DFT fails. However,
there is an ambiguity in LDA+U that results from the double
counting of electron repulsion terms between the LDA energy
expression and theHubbardU term. There are two limiting cases—
the around mean field (AMF) and fully localized (FL) limits—
where the double counting correction can be worked out.
Because AMF always lowers the total energy and FLL raises it,
interpolating between the two limits subject to the constraint that
the total energy correction is zero seems a reasonable prescrip-
tion.328 To enforce the physical idea that the energy correction
should be zero, one of course uses constrained DFT. That is to
say, one uses constrained DFT on top of LDA+U to obtain a
unique prescription for the double counting correction. The
constraint is (as always) enforced via a corresponding Lagrange
multiplier, which in this case appears as (U� J)/2. For a givenU,
the energy and J are then determined self-consistently so as to
minimize the total energy subject to the constraint that the
double counting correction is zero. It is convenient to character-
ize the system with an interpolation parameter, α. When α = 0,
the AMF limit is attained; α = 1 corresponds to the FL limit. The
behavior of α as a function of U in the magnetic system FeAl
(shown in Figure 38) is quite fascinating. For small U, α is small,
showing that the itinerant AMF limit is nearly attained; in
contrast, the system is more intermediate between the two limits
for large U. The behavior in the hysteresial region is of note,
where paramagnetic and ferromagnetic solutions coexist.

One can also use CDFT to make reduced Hamiltonians that
describe simultaneous charge and spin motion in conjugated
molecular wires.327 Within the realm of quantum chemistry,
there is a long history of the use of qualitative molecular orbital
theory to describe such systems. One important representative
from this family is the PPP model, which can be cast as an
extended Hubbard model with generic two-site Coulombic
repulsion:316

Ĥ ¼ � β ∑
N � 1

j
∑
σ
ð̂c†j, σ ĉjþ1,σ þ ĉ†j þ 1,σ ĉj, σÞ
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2 ∑
N
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Γj, kn̂jn̂k ð70Þ
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g

 !�1

ð71Þ

The adjustable parameters are β and g. Once again, CDFT is
useful in parametrizing the model based on ab initio data.
Because conduction under finite bias probes states far from the
ground state, it is not possible to parametrize β and g simply on
the basis of the parabolic behavior of the charge around the
ground state, as done in Figure 35. Instead, a somewhat
qualitative fitting approach needs to be taken, similar to early
scanning techniques used164,325 to attain target values for loca-
lized charge. Toward this end, Figure 39 shows the behavior of
Ntot and Mspin over a range of applied potentials, both from
CDFT and from the PPP model. The overall slope of the Ntot

curve is controlled by theβ parameter while the slope of theMspin

curve is controlled by g, effectively fixing values of β = 0.16 and

g = 0.55 in the model. In this case, the PPP parameters so
obtained are within a factor of 2 of values previously suggested.338

It is clear from the curves that the PPP model has excellent
agreement with ab initio HF, but it does a less impressive job
reproducing B3LYP. This discrepancy is attributable to the
presence of SIE in B3LYP; indeed, by artificially introducing
SIE into the PPP model (PPP�SIE in the figure) one obtains a
model Hamiltonian that tracks the B3LYP results very well.

With these model parameters in hand, it is possible to use
high-level correlation techniques based on the generator coordi-
nate method339�342 to explore the dynamics of charge conduc-
tion through these wires. These simulations allow for the
treatment of quantum wave functions that involve millions of
determinants and wires that are significantly longer than those
which can be easily accessed using DFT or TDDFT. These
correlated calculations show the disturbing trend that most
functionals shift the transport gaps of these wires in the
wrong direction. True many-body correlation causes the gap
to increase, as the system approaches a Mott insulator
transition,343 while all common functionals narrow the gap
significantly. Thus, once again we see that using CDFT in
conjunction with a simple model Hamiltonian extends the
reach of modern DFT.

Figure 38. Magnetic moments of FeAl for AMF and the “DFT” flavors
of LDA+U compared with the results ofMohn et al.337 Reproduced with
permission from ref 328. Copyright 2003 American Physical Society.

Figure 37. Depiction of the exchange coupling interactions between
spin-5/2 Fe

III ions in Fe8. The Fe8 system is of particular note, as it is a
single-molecule magnet; a wide spread of phenomena such as macro-
scopic quantum tunneling, steplike hysteresis, and the potential for
molecular magnetic data storage devices have led to interest in this class
of molecules. Fe8 in particular is noteworthy for having strong spin
frustration, so that the details of the microscopic interactions can greatly
affect the overall behavior. LS1�LS8 are the different spin configura-
tions used to compute ranges of values for the couplings. Reproduced
with permission from ref 230. Copyright 2007 American Chemical
Society.



356 dx.doi.org/10.1021/cr200148b |Chem. Rev. 2012, 112, 321–370

Chemical Reviews REVIEW

6.3. Static Correlation
One of the biggest challenges remaining for quantum chem-

istry is the proper treatment of systems with strong (static)
correlation.344,345 Reaction barriers,135,346,347 bond dissocia-
tion,55,348,349 and conical intersctions46,47,350 all involve signifi-
cant static correlation and remain the bêtes noires of computa-
tional methods, including DFT. Static correlation is loosely
defined by the inability of a single determinant to correctly
capture the nature of the wave function; this breakdown of the
single-determinant approximation is nicely illustrated by an
example. Consider the dissociation of a heteronuclear diatomic
molecule such as LiF to infinite separation.351,352 At short
distances, the wave function is dominated by the ionic config-
uration, |Li+F�æ, which is well-represented by a single determi-
nant and therefore (by definition) has little or no static
correlation. However, at long distances, the wave function will
be dominated by the covalent singlet state |LivFVæ + |LiVFvæ, which
is not a single determinant. Thus, the molecule transitions from
weak correlation at short bond lengths to strong (static) correla-
tion at large distances. DFT traditionally has difficulty describing
these types of strong correlation, since KS theory is traditionally
formulated with just a single determinant. Multideterminant KS
methods have been attempted,353 but they are not in common
use. Furthermore, in the LiF case, there is an additional compli-
cation due to SIE: pure semilocal DFT does not even dissociate
to neutral fragments but to an unphysically stabilized fractionally
charged |Li+δF�δæ state.354 The intermediate region is evenmore
of a challenge, as an accurate methodmust navigate the transition
from ionic to neutral, which involves commanding the balance
between static correlation, weak dynamic correlation, and SIE.

An elegant solution to this problem is to embrace the multi-
configurational nature of the system and introduce multiple
Kohn�Sham determinants into the description of the system.
The intermediate regime might then be described as

Ψstretched ¼ c1Φionic þ c2Φneutral ð72Þ

c1
2 þ c2

2 ¼ 1 ð73Þ
The ci form the CI vector of a model Hamiltonian, in the basis of
the (as-yet unspecified) Φionic and Φneutral. CDFT provides an
easy framework to produce these chemically intuitive states by
enforcing a combination of charge and spin constraints on the
system. The CDFT energies then form the diagonal elements of
this model Hamiltonian, while the off-diagonal elements are
populated by the coupling elements of section 5.47,54,55,135,277

This formalism can be readily generalized to the case of N
states generated by arbitrary constraints:
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where the S terms incorporate the nonorthogonality of generic
CDFT states. By analogy to conventional configuration-interaction

(CI) methods, which build and diagonalize an interaction matrix
between Hartree�Fock determinants, this method is termed
CDFT-CI, using interactions between CDFT Kohn�Sham deter-
minants to produce better approximations to the true energy
eigenvalues of the Hamiltonian.55 CDFT-CI is quite remarkable
in its generality—all of the other model Hamiltonians described
in this section have been explicitly designed for a particular
problem, or particular narrow class of problems. In contrast,
CDFT-CI is less a single model Hamiltonian form and more a
framework for constructing custom models—there is flexibility
to use an arbitrary set of constrained states as the basis for the
model Hamiltonian. Choosing these basis states (tailored for the
particular system of interest) then defines the Hamiltonian,
which CDFT-CI computes and diagonalizes to yield energies,
CI vectors, and other one-electron properties.

Returning to the system which motivated this discourse, the
dissociation curve for LiF using CDFT-CI is shown in Figure 40,
within a four-state basis of Li+F�, Li�F+, LivFV, and LiVFv . Results
are presented for CDFT-CI using two different functionals; both
perform well, with the hybrid B3LYP yielding the best results. As
expected, passing through the dissociation region shows a
smooth transition from ionic to neutral for all three curves, as
tracked quantitatively by following the CI vectors, shown in
Figure 41. The crossover between ionic and neutral basis states
occurs at 6.6 Å, as expected fromwhere the Coulombic attraction
of the ions equals the difference of electron affinity and ionization
potential.55 Unlike conventional DFT, all the CDFT-CI curves
show the correct dissociation limit in Figure 40. The accuracy of
BLYP and B3LYP around the equilibrium geometry is preserved,
indicating that the CDFT-CI prescription does not spoil con-
ventional DFT in regions with little static correlation. The PESs
are accurately described everywhere—at the equilibrium geo-
metry, at infinite separation, and in the troublesome region in
between where static correlation is strongest.

Static correlation also plays a significant role in intra- and
intermolecular rearrangements, such as elementary reaction
steps. The greatest challenge to DFT is at the reaction barrier,
where bond breaking leads to strong static correlation,346,357 and
traditional functionals are known to predict poor reaction barrier
heights.354,358�360 Simple two-state CDFT-CI provides an alter-
native route to reaction barrier heights as follows. First, we assume
that two basis states (“reactant” and “product”) are sufficient to
construct a diabatic picture of the reaction. The wave function at
the transition state is then a linear combination of these config-
urations. In this case, we can construct a good model Hamilto-
nian from two CDFT states—one constrained in accordance
with the reactant fragments and the other in accord with the
products. We then obtain the transition-state energy from the
lowest eigenvalue of the CDFT-CI secular equation. The results
of this method for a set of 64 reactions taken from the HTBH38/
04 and NHTBH38 databases346 are shown in Table 12.135 The
CDFT-CI barrier heights are typically improved by a factor of
2�3, which is significant; it is approximately the difference in
quality attained when going from a pure functional to a hybrid.

The set of reactions includesmany examples of hydrogen atom
transfer, heavy atom transfer (e.g., fromCH3 + FClTCH3F +Cl),
and nucleophilic substitution, largely between halogens and
methyl groups. For these isogyric reactions, the difference between
the “reactant state” and “product state” at the transition-state
geometry is merely whether the electrons of the transferring group
mingle with the reactant fragment or the product fragment, a
seemingly minor condition when the written reaction does not
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involve charge transfer among fragments. Nonetheless, CDFTwill
produce different constrained states for these different conditions,
and assembling a model Hamiltonian with their energies and
coupling produces energy eigenvalues that are quite accurate.
Explicitly constraining charge and spin to be localized reduces the
effects of the DFT SIE which plagues ordinary ground-state
calculations, especially at reaction transition states.

The reasons why CDFT-CI is so successful are relatively clear:
by using CDFT states as the basis for the CI, we are able to
effectively control the impact of SIE on the calculations and
include dynamic correlation through the CDFT energies. By
performing a CI calculation on top of the CDFT states, we add
back in the static correlation that is artificially missing from the
localized CDFT solutions. As a result, CDFT-CI seems like a
well-balanced tool for the description of static correlation in
molecular systems.

Figure 40. Dissociation curve of LiF as computed with various CDFT-
CI prescriptions in a 6-311G++(3df,3pd) basis set. Optimized-orbital
coupled-cluster doubles calculations355,356 with second-order correction
[OD(2)] results are included as a reference. Reproduced with permis-
sion from ref 55. Copyright 2007 American Institute of Physics.

Figure 41. Weights of configurations in the final ground state of LiF.
Reproduced with permission from ref 55. Copyright 2007 American
Institute of Physics.

Figure 39. B3LYP and Hartree�Fock calculations on a polyacetylene wire C50H52, with corresponding PPP calculations for a 50-site chain, and
“PPP�SIE”with artificially reduced exchange term, showing the dependence of population differenceNtot (source minus drain) upon spin-independent
constraining potential Vtot with fixed spin-dependent potential of Vspin = 0.272 V and net spin difference (source minus drain) Mspin upon spin-
dependent potential Vspin with fixed spin-independent potential Vtot = 1.36 V. Shown for the anion C50H52

� (a, c) and cation C50H52
+ (b, d).

Reproduced with permission from ref 327. Copyright 2008 American Physical Society.
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6.4. Excited States
Electronic excited states play a central role in the function of

optoelectronic devices such as LEDs,361 photoswitches,362 and
photovoltaics,363 but the accurate description of these states is
probably the greatest unsolved problem in quantum chemistry at
present. Though there are some methods available that can
overcome the failings of TDDFT, such as equation-of-motion
coupled-cluster (EOM-CC),364 CASPT2,365,366 and a hierarchy
of coupled-cluster methods,367,368 it is hard to get accuracy
consistently better than 0.2 eV, and they are computationally
expensive, limiting applicability to large systems. As we have
already seen, CDFT can describe a small handful of excited states
directly (i.e., those involving long-range charge or spin
separation). However, when CDFT is integrated into an appro-
priate model Hamiltonian, the range of excited states amenable
to simulations expands dramatically. The reasons for this are
2-fold: the reduced Hamiltonian simulations are typically much
faster than DFT calculations, so that larger systems can be
simulated, and the simplicity of the model Hamiltonian often
allows for a much more sophisticated treatment of electron
correlation in the excited state. Both of these ideas were
illustrated briefly above using the PPP model of polyacetylene
to describe conduction dynamics. In this section, we focus on the
final frontier of electronic excited states.

As a starting point, it would be ideal if one could accurately
treat linear optical properties, such as the absorption and
emission spectra of a system. Toward this end, let us consider
the absorption spectrum of GaAs, shown in Figure 42.329 The
experimental spectrum is rather poorly reproduced by the
independent particle approximation (IPA), particularly at low
energies, where the electron�hole attraction is most pro-
nounced. In order to account for electron interactions, we can
supplement the IPA in much the same way we added electron�
electron repulsion terms to the tight binding model to obtain
PPP. In this case, adding all two-center Coulomb repulsion terms
results in the CNDO model,371,372 which can be parametrized
using CDFT as described above. To transform the plane-wave
DFT basis into a site model, maximally localized Wannier
functions (MLWFs)61,373,374 are used, and CDFT calculations
determine U and a screened Coulomb repulsion Vij. One can
then take the derived CNDO model and perform CIS
(configuration interaction with single excitations) to approxi-
mate the spectrum in the presence of interactions, as shown in the
figure. Clearly, the intensity of the low-energy excitation peak is
suitably enhanced, indicating that the proper physics has been
restored. It should be noted that the resulting CNDO-CIS calcula-
tions aremuch faster than the associated TDDFT spectrum, and yet
the simpler calculation captures the important effects.

GaAs exemplifies the typical situation for solids, where a large
set of excitations from the ground state are collectively important

for describing the optical properties. In chemistry, one often has
the opposite scenario: the low-lying excited states are often
dominated by only a handful of very important configurations.
CDFT-CI excels in this regime, choosing a small handful of
relevant configurations from chemical intuition to be the extent
of the CI calculation. This formal picture is particularly important
for the description of conical intersections—the seams of true
degeneracy between electronic states in the high-dimensional
configuration space.300,350 At any such intersection, there are two
directions in which the degeneracy is broken (arising from the
two conditions that the energy gap and coupling must both go to
zero at the intersection), so a three-dimensional plot shows only
a single point of intersection, resembling a dual-lobed cone
(hence the name).

A complete discussion of these fascinating objects is beyond
the scope of this review. For the present purposes, we merely
note that these topological features are particularly challenging
for single reference methods, as the proximity of the ground and
excited state necessarily introduces extremely strong multiconfi-
gurational character into the system.46,352 As TDDFT is a single-
reference method, we expect traditional functionals to fail
qualitatively in the description of conical intersections, and this
is indeed the case. For example, Figure 43a shows the TDDFT
energies of water near its linear geometry, where symmetry
dictates there must be a conical intersection.47 The ground state
potential surface is not bad, particularly at short distances, but
TDDFT fails to describe even the qualitative topology of the
intersection correctly: instead of finding a cone, TDDFT predicts
a double seam. By comparison, the CAS(6,9) calculation (with
3057 determinants) shown in Figure 43b provides an accurate
depiction of both the ground and excited state around this
intersection. In order to describe this system correctly within
the context of DFT, we turn to CDFT-CI. Our CI space spans
just four physically motivated configurations: HO�H+, H+OH�,
HvOVVHv, and HVOvvHV . No single one of these states is a good
approximation to the ground or excited state of H2O near the
intersection. But by taking linear combinations of these states,
CDFT-CI produces the conical intersection in Figure 43c, which

Figure 42. The optical absorption spectrum of GaAs. Circles represent
experimental data from refs 369 and 370, the thick red line is down-
folded-CDFT CIS calculations, and the thin green line is from IPA
calculations. Reproduced with permission from ref 329. Copyright 2008
American Physical Society.

Table 12. Errors in System Energy (in kcal/mol) for a Set of
64 Hydrogen Transfer, Heavy Atom Transfer, and Nucleo-
philic Substitution Reactions, Using a Variety of Functionals a,b

LSDA CLSDA-CI PBE CPBE-CI B3LYP CB3LYP-CI

mean error �16.7 �8.9 �10.0 �3.4 �5.0 1.2

mean absolute

error

16.7 10.0 10.0 4.2 5.1 2.5

aRegular DFT and CDFT-CI results are contrasted. bData adapted
from ref 135.
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is quantitatively correct. CDFT-CI has a further advantage over
CAS in that CAS cannot include any dynamic correlation, which
the DFT functional treats inherently; expensive corrections
above CAS, such as CASPT2 or MRCI, are needed to introduce
dynamic correlation into the computed states. Thus, CDFT-CI
successfully leverages the ability of hybrid DFT functionals to
describe dynamic correlation in combination with a description
of static correlation among a hand-picked basis of spin- and
charge-constrained states. Combined, they produce a custom
model Hamiltonian that allows for a very concise and accurate
description of the electronic energy manifold near this conical
intersection. Overall, it would appear that the method holds
significant promise for the description of low-lying excited states
in molecular systems.

6.5. Conclusion and Future Work
As demonstrated in this section, the use of CDFT to param-

etrize model Hamiltonians proves to be a quite general tool, with
applications to the band structure and excitation spectra
of electronic solids, magnetic systems, conduction, molecular
rearrangement, and PES crossings. Once a particular Hamiltonian

form has been parametrized, calculations using the model can be
extended to larger systems or high-level computational techni-
ques that would be prohibitively expensive as DFT calcula-
tions. We thus recognize the overarching theme that model
Hamiltonians extend the reach of traditional DFT calculations
both in terms of system size and accuracy.

There are, of course, a variety of prescriptions being used to
connect the CDFT calculations to the models in the applications
above. Among these, the CDFT-CI scheme is perhaps the most
flexible and promising, as long as only a handful of states are
chemically relevant. In this scheme, CDFT energies and cou-
plings provide a diabatic representation for Ĥ that yields both the
ground and excited states of a very general class of systems over a
variety of conditions. This framework should be quite flexible and
may make ab initio molecular dynamics on electronic excited states
more accessible to larger systems. Along these lines, the main
hurdle to be overcome is the implementation of analytical
gradients of the CDFT-CI energy with respect to nuclear
position (i.e., nuclear forces). Such an advance would allow for
efficient location of non-symmetry-required CIs and excited-
state molecular dynamics. Likewise, there is still room for
innovation in the area of using CDFT to parametrize model
Hamiltonians of predetermined form; models for studying
intersystem crossing in three-spin systems are a prime candidate
for such CDFT treatment.375 Between the array of specialized
models and the generic flexibility of CDFT-CI, CDFT has been
indispensible in turning simple model Hamiltonians into accu-
rate tools that yield chemical insight.

7. RELATED APPROACHES

The preceding sections illustrated how CDFT addresses
several outstanding challenges in DFT while extending its range
of applicability to situations where a diabatic representation is
appropriate. Of course, other approaches have been proposed
and implemented to address many of these needs. Not surpris-
ingly, some of these alternatives share key attributes with CDFT.

In this penultimate section, we highlight new and ongoing
developments in DFT that share common goals with the CDFT
approach. We focus in particular on the reduction of self-
interaction error in charge- and spin-localized systems, the
generation of diabatic states through orbital localization, and
the even-handed treatment of ground and excited states.

7.1. Overcoming Self-Interaction Error in Approximate Den-
sity Functionals

Most density functional approximations harbor some degree
of self-interaction error (SIE). Early studies of SIE were moti-
vated by the observation that many approximate exchange-
correlation functionals cannot supply an exchange-correlation
energy that exactly cancels the Coulomb self-interaction of an
arbitrary one-electron density.376 The more general and more
recently developed concept of many-electron SIE359 frames this
error as the deviation from linearity of the energy as a function of
the number of electrons.377,378 In practice, SIE in pure density
functionals often manifests itself as a delocalization error, as it
tends to incorrectly favor delocalized densities.36,285 Global
hybrid functionals with a large admixture of Hartree�Fock
exchange can present the opposite (localization) error. For
reviews on SIE, see refs 143 and 379; here we focus on methods
that adopt standard functionals and attempt to correct or control
the SIE, in the same spirit as CDFT. In particular, we highlight
howCDFT and three other approaches—explicit self-interaction

Figure 43. The conical intersection for linear water, shown as com-
puted via (a) TDDFT, (b) CAS(6,9) (six electrons in nine orbitals), and
(c) a four-state CDFT-CI. Reproduced with permission from ref 47.
Copyright 2010 American Institute of Physics.
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correction, DFT+U, and range-separated hybrids—achieve
some of the same goals.

The effects of SIE are most severe in systems with significant
fractional electron character.354 Stretched H2

+ provides a simple
example: semilocal functionals predict a much lower energy for
the delocalized electron density H+0.5�H+0.5 than for the localized
one H+�H, even at infinite separation. The tendency of semi-
local functionals to favor delocalized densities for mixed-valence
compounds is another manifestation of this effect. Through the
application of charge constraints, CDFT mitigates the over-
delocalization effect at the cost of some degree of arbitrariness
in the definition of the constraint itself; nevertheless, the benefits
of reducing the fractional electron character of the system with
CDFT are tangible in the successes of CDFT-CI for properties
involving stretched systems, such as barrier heights and conical
intersections.

Many-electron SIE is also at the heart of the band gap
problem,379 which has direct bearing on the accuracy of LR-
TDDFT for CT excitation energies. The band gap problem refers
to the discrepancy between the Kohn�Sham orbital energy
difference ɛLUMO � ɛHOMO obtained with semilocal functionals
and the band gap, i.e., the difference between the electron affinity
and the ionization potential. In LR-TDDFT, the Kohn�Sham
orbital energy difference is the zeroth-order approximation to the
excitation energy, and while higher-order corrections provide
reasonably accurate valence excitation energies, these higher-
order terms tend to zero for CT states.44 The CDFT prescription
for CT states entails a direct construction of the CT state density,
thus circumventing the band gap problem and its consequences
for LR-TDDFT.

Targeted efforts to correct for SIE have been ongoing since the
first implementations of density functional approximations for
practical calculations. The original Perdew�Zunger SIC intro-
duces an orbital-by-orbital correction to the SIE that increases
the computational complexity considerably.376 The corrected
functionals lead to improved orbital energies, but their perfor-
mance for chemically significant quantities such as bond lengths
and reaction barrier heights proved worse in many instances than
their uncorrected counterparts.380�382 Unger introduced a re-
lated SIC which is closer in spirit to CDFT because it is for-
mulated in terms of atomic density fragments defined in real
space;383 however, its practical application to molecular systems
remains largely unexplored. The development of functionals that
afford piecewise-linear energies as a function of electron number377

is a major outstanding goal in approximate DFT and should
enhance the predictive power of DFT for chemical properties
and reactivity in the ground state.

TheDFT+Umethodsmentioned in section 6 provide another
way to mitigate the effects of SIE. In the DFT+U approach, one
takes a typical LDA or GGA calculation and adds Hubbard U
terms (q.v., section 6.1) to certain atoms, for example, d- or
f-blockmetals. One then tunes the value ofU (either on empirical
grounds, using CDFT or linear response64) and then performs a
new calculation where the LDAHamiltonian is supplemented by
the new on-site repulsion terms. By penalizing doubly occupied
orbitals on themetal, delocalized states are disfavored (since they
are superpositions of all possible local charge states) in favor of
localized, fixed-charge states. This is how DFT+U partially
compensates for SIE.

The charge-localized states generated by LDA+U are qualita-
tively correct in an array of different Mott insulators and exotic
conductors, so LDA+U has a wide impact: it has been used to

understand magnetism in lanthanum cobaltates,384 to describe
the electronic structure of perovskites75 and correlated metals328,
and to predict redox potentials of transition metal systems,385

among other applications. The U correction can also be used to
penalize noninteger populations on electron donors and accep-
tors in ET applications.386 Furthermore, DFT+U has shown
promise in correcting the failure of LDA and GGA functionals to
predict the ground state spin multiplicity of certain transition-
metal complexes387 and of adatoms adsorbed on graphene.388 To
illustrate, in Figure 44, the energy of several low-lying spin states
of the pentacoordinate heme-imidazole complex, FeII�P(Im),
are plotted against the value of the Hubbard U parameter. The
plot shows that the DFT+U ground state crosses over from the
triplet to the quintet around U = 2 eV; the quintet is the
experimentally observed ground state and is recovered for
physically reasonable values of U.

The physics of DFT+U and CDFT are quite similar: both
methods mitigate or remove SIE from existing functionals. The
role of the Hubbard U in DFT+U is replaced by the constraining
potential V in CDFT. Thus, depending on one’s perspective,
DFT+U is either an extension of CDFT (as the U parameter can
be determined via CDFT) or as a parallel method that accom-
plishes many of the same aims in a different context.

Of course, we would not need to correct for SIE if we had the
exact density functional; by extension, we can anticipate that
better approximate functionals will suffer less severely from many-
electron SIE. As an example, we consider the class of functionals
known as range-separated141�143 or long-range corrected139,389

functionals, which have been shown to be more robust to the
effects of SIE143 than their conventional hybrid counterparts.
These functionals employ a judicious balance of exact and
semilocal exchange, beyond the simple admixture employed in
global hybrid functionals. The success of global hybrids can be
attributed to cancellation of delocalization error in the semilocal
exchange functional by localization error introduced by exact
exchange.285 However, this error cancellation is incomplete in
global hybrids; in particular, it fails to recover the correct
asymptotic behavior of the exchange-correlation potential.390

Range-separated functionals recover the correct 1/R asymptote
and are becoming widely adopted. Their use in LR-TDDFT
calculations140 shows particular promise.

As an example of how long-range correction schemes and
CDFT can accomplish similar goals, we consider the lowest CT

Figure 44. Dependence of low-lying spin state energies of FeII�P(Im)
on theHubbardU parameter. Reproduced with permission from ref 387.
Copyright 2007 American Chemical Society.
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state of the ethylene�tetrafluoroethylene dimer (C2H4—C2F4)
as a function of intermolecular distance. This complex is an exemplar
for both the failures of LR-TDDFT with conventional hybrids44

as well as the successes of the range-separation approach.140

Figure 45 shows the energy of the CT state as predicted by
LR-TDDFT with the global hybrid PBE0 and a long-range
corrected variant, as well as by CDFT with the B3LYP global
hybrid; each curve is shifted so that its zero of energy occurs at
intermolecular separation R = 5 Å. Without range separation,
PBE0 severely underestimates the energy of the CT state at long
distances because of the incorrect asymptotic form of the
exchange-correlation potential, whereas its long-range corrected
variant tracks the �1/R reference curve quite well. CDFT also
correctly describes the distance-dependence of the CT state
energy, without the need for a long-range correction scheme.

In the foreseeable future, the improvement of range-separated
hybrids could potentially cure SIE problems in DFT and TDDFT,
at least for practical purposes. In this situation, methods like
CDFT and DFT+U would no longer be needed to avoid
unphysical delocalization and poor CT excited states. However,
even with a practically exact functional, CDFT could still play a
useful role in constructing diabatic states and parametrizing
model Hamiltonians for complex problems, as discussed below.

7.2. Orbital Localization Approaches to Diabatic States
Density constraints provide a conceptually simple route to

diabatic states, but in some cases, the self-consistent determina-
tion of the constraining potential can be difficult to achieve.
There exists a complementary class of self-consistent methods,
known as block-localization (BL) methods,266 which construct
diabatic states by assigning atomic basis functions to predefined
molecular fragments and solving the HF or KS equations while
forcing the density matrix to be block diagonal with respect to
these fragements.391 The MOs produced in BL-HF and BL-DFT
calculations are each fully localized on one of the fragments;
hence, they are sometimes referred to as absolutely localized
molecular orbitals (ALMOs).392 ALMOs are mutually orthogonal

within each block but are nonorthogonal in general across blocks.
Nevertheless, the technique has been successfully used to accel-
erate SCF calculations on weakly interacting systems, where it is
also known as locally projected SCF for molecular interactions
(SCF MI).392

Like CDFT, BL-DFT carries some of the concepts of valence
bond (VB) theory into the realm of first-principles calculations.
Its connections to the construction of diabatic states have been
highlighted by Cembran and co-workers.393 BL-DFT provides a
natural vehicle for the analysis of VB constructs such as reso-
nance structures. Mo and co-workers illustrated this connection
by examining the DFT and BL-DFT descriptions of the allyl
radical, cation, and anion.391 The vertical resonance energy

Eresv ¼ EðBL-DFTjDFTÞ � EðDFTjDFTÞ ð75Þ
and the adiabatic resonance energy

Eresa ¼ EðBL-DFTjBL-DFTÞ � EðDFTjDFTÞ ð76Þ
were both obtained, where E(A|B) represents the energy obtained
by method A at the optimized geometry from method B. The
resonance energies and optimized geometries are shown inTable 13.

Bond lengths for the localized structures are comparable to
typical C�C single- and double-bond lengths; thus, BL-DFT
produces resonance structures that are in keeping with the tenets
of basic VB theory. The BL-DFT resonance energies of the allyl
cation and anion are similar, amounting to roughly twice the
resonance energy of the allyl radical. The elucidation of formal
charge states in small systems like allyl can present a challenge for
CDFT because the short charge separation distance enhances the
sensitivity of the energy to the definition of the constraint
regions. The reduced flexibility in the definition of the constraints
in BL-DFT makes the BL-DFT approach less precise but still
provides a valuable tool for the analysis of VB states from first
principles.

A powerful extension of the block localization technique to
treat large systems, such as a collection of solvent molecules, at an
approximate QM level has been developed by Gao and co-
workers.394�396 The general strategy consists of solving the HF
or KS equations for each solvent molecule subject to the electric
field due to a collection of point charges associated with the
surroundingmolecules. These point charges are derived from the
localized wave function of the corresponding solvent molecules,
thus introducing an additional layer of self-consistency to be
satisfied; nevertheless, the approach offers a viable route to
describe, for example, a solvent or protein environment, in a
framework based on a product wave function for the entire
system.

BL-DFT has found several applications in the decomposition
of molecular interaction energies into contributions such as
multipole interactions, polarization, and charge-transfer effects,
as recently reviewed in ref 397. Mo et al. identified the polariza-
tion of benzene in benzene�cation complexes as a significant,
sometimes dominant, contribution to the interaction energy,391

underscoring the need to account for polarizability in classical
simulations of biologically relevant processes such as transport
through ion channels. Khaliullin and co-workers used a BL-DFT
approach to decompose the interaction energies of the water
dimer,398 aqueous metal ion clusters,399 small donor�acceptor
complexes,400 and weakly bound organometallic complexes.399

They used this information to quantify the role of CT in the
binding energies of these complexes.

Figure 45. Energy of the CT state of the ethylene�tetrafluoroethylene
complex as a function of intermolecular distance for LR-TDDFT and
CDFT. LR-TDDFT with the long-range-corrected functional LC-
ωPBE0 and CDFT both correctly track the �1/R curve, in contrast
with LR-TDDFT using conventional hybrids.
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Figure 46 exemplifies how BL-DFT calculations can inform
and assess the rationalization of weak interactions like hydrogen
bonding, back-bonding, and hyperconjugation in terms of over-
lap between occupied and virtual MOs. Here, CT in the water
dimer is decomposed in terms of complementary occupied-
virtual orbital pairs (COVP) for a geometry in which both pro-
tons of one water are equidistant from the oxygen of the other
water. Altogether, the CT contribution to the binding energy was
found to be aminority component which becomesminimal at the
orientation depicted in Figure 46. It is also at this geometry where
more than one donor orbital contributes substantially to the CT
effect.

Overall, CDFT and BL-DFT share much in spirit, as both
techniques generate localized, self-consistent diabatic states in a
DFT framework. However, because of the restricted form of the
density matrix invoked in BL-DFT, the primary focus in BL-DFT
applications has been on intermolecular interactions and the
simulation of large condensed phase systems.

7.3. Balanced Treatment of Ground and Excited States in
DFT

Density functional theory is formally a ground-state theory;3

several challenges hinder its formal extension to excited states.401�404

Nevertheless, DFT-based methods that can describe ground and
excited states on the same footing are highly desirable for
practical calculations on large systems with several important
electronic states. CDFT and CDFT-CI meet this challenge by
describing diabatic states as ground states in the presence of
different constraining potentials. Diagonalization of the CDFT-
CI Hamiltonian then provides both ground and low-lying excited
adiabatic states.

Another way to extend the machinery of ground-state Kohn�
Sham DFT to excited states is to construct higher-energy Slater
determinants self-consistently from the Kohn�Sham orbitals.8,405

This is usually accomplished by occupying the KS orbitals in a
prescribed non-Aufbau manner at each step of the SCF proce-
dure. This procedure goes by several names:ΔSCF,406ΔDFT,26

excited state DFT,407 and—delightfully—constrained DFT408,409

(here the constraint is on the KS orbital occupations rather than
on the density).

The idea behind theΔSCF approach to excited states was first
presented by Ziegler, Rauk, and Baerends for the computation of
multiplet energies in the context of the Xα method.405 Their
work highlights the fact that single-determinant SCF calculations
of excited states do not necessarily yield spin eigenfunctions. For
example, the lowest singlet excited state of a closed-shell mole-
cule is an open-shell species whose correct description requires

two determinants (Figure 47). Ziegler and co-workers proposed
a sum rule that corrects single-determinant ΔSCF energies for
spin contamination; in the case of the open-shell singlet, the
purification formula is

Es ¼ 2EvV � Evv ð77Þ

where EvV and Evv represent the energies of the mixed and triplet
determinants of Figure 47, respectively.

The SCF equations are often more difficult to converge for
electronic states with non-Aufbau orbital occupations, and this is
a potential drawback of the ΔSCF method. Modern SCF
algorithms are so efficient at seeking the global energy mini-
mum that it can be difficult to maintain non-Aufbau occupations
through SCF convergence. However, there are no formal limita-
tions to the convergence of ΔSCF states, and several techniques
have been proposed and implemented to retain the target
configuration, including the maximum overlap method (MOM),411

the constrained orthogonality method (COM),412 and SCF
metadynamics.413

With the development of practical tools for obtaining ΔSCF
states, a number of interesting applications have surfaced in
recent years. ΔSCF has proven capable of describing a wide
variety of excited states—from valence excitations in dyes414 and
in proteins415 to core excitations416 and Rydberg states407—with
errors typically only a fraction of an electronvolt in each case.
ΔSCF has been shown to provide similar, and in some cases
superior,416 performance to the more frequently employed
LR-TDDFT. For example, Robinson and Besley’s ΔSCF/MM

Figure 46. Illustration of two major ALMO contributions to inter-
molecular CT-induced bonding in the water dimer. Nearly opaque
orbitals are occupied, while the more transparent orbitals are virtual.
Reproduced with permission from Ref 398. Copyright 2009Wiley-VCH
Verlag GmbH and Co. KGaA.

Figure 47. Four singly excited determinants form a basis for one singlet
and three triplet spin eigenfunctions. SCF calculations produce single
determinants, so some form of spin purification is required to obtain the
energy of the pure singlet. Reproduced with permission from ref 410.
Copyright 2006 American Institute of Physics.

Table 13. Optimal C�C Bond Lengths (Å) and Resonance
Energies (kcal/mol) in Allyl Systems from DFT (delocalized,
hence only one unique bond length R0) and BL-DFT
(localized, with shorter and longer C�C bond lengths
R1 and R2)

a

delocalized structure localized structure resonance energy

allyl R0 R1 R2 vertical adiabatic

radical 1.378 1.323 1.509 32.1 23.2

cation 1.377 1.328 1.472 51.1 46.3

anion 1.390 1.336 1.508 48.5 41.8
aData from ref 391.
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simulations of the UV�vis spectrum of the ET protein
plastocyanin415 achieved an accuracy comparable to that of a more
expensive multireference configuration interaction (MRCI) ap-
proach, while LR-TDDFT significantly underestimates the excita-
tion energies for the two most prominent peaks in the spectrum
(Figure 48). These encouraging applications point to a bright
future for ΔSCF.

Although the Ziegler sum rule, eq 77, is a convenient way to
correct the energy of aΔSCF state for spin contamination, it does
not provide access to a spin-adapted density, nor to any other
spin-adapted one-electron properties. It is thus desirable in some
situations to achieve spin adaptation of theΔSCF state at the level of
the KS orbitals. These observations motivated the development of
the restricted open-shell Kohn�Sham (ROKS) methods.417,418

Filatov and Shaik derived ROKS by analogy to Roothaan’s vector
coupling formalism for restricted open-shell Hartree�Fock (ROHF)
theory,419 and they found multiplet energies in reasonable agree-
ment with experiment for a range of small molecules,420 shown in
Table 14. Frank and co-workers established ROKS as a
computationally efficient DFT method for excited state mo-
lecular dynamics.418,421 Arguments disfavoring restricted
open-shell calculations in the context of Kohn�Sham DFT
have appeared in the literature,422 but it should be noted that
these arguments address ROKS for ground states of high-spin
systems and do not apply to the low-spin excited states under
consideration here.

ROKS has been successfully applied to the calculation of
excited-state potential energy surfaces423 and nonadiabatic

coupling vectors,410 among others. A considerable practical
advantage shared by ROKS and CDFT is their accessibility for
MD simulations, bestowed by the similarity of their implementa-
tion to that of ground-state DFT. The spirit of the ROKS
approach has been extended to systems exhibiting significant
static correlation in the ground state through the restricted
ensemble-referenced Kohn�Sham (REKS) method,424 and
these methods together supply an efficient scheme for studying
complex photochemistry such as photoisomerization processes
in a molecular rotor.425

Looking forward, we note that ΔSCF determinants can, in
principle, provide a well-tuned, compact set of reference states
for a CI calculation. Thom and Head-Gordon have used SCF
metadynamics413 to obtain a basis ofΔHF reference states for CI
calculations of the ground and low-lying excited states of LiF and
O3.

298 These calculations suggest that multireference schemes
based on ΔSCF states could be a practical complementary
approach to CDFT-CI for obtaining ground and low-lying
excited states with similar accuracy from a low-dimensional CI
calculation. Future work should establish the strengths and
weaknesses of ΔSCF states as a basis for multireference
calculations.

8. CONCLUSION

The purpose of this review is 3-fold: to motivate and introduce
the CDFT formalism, to summarize the diverse body of applica-
tions to date, and to offer some guidance to prospective users.
There are likely dozens of creative ways that the ideas behind
CDFT could be synthesized into new contexts and unexplored
applications; thus, even when approximations to the XC func-
tional eliminate the original motivating need for CDFT, we
anticipate that the ideas presented in this review will retain much
of their value for applications in other areas.

In this review, we emphasized the usefulness of CDFT as a
practical strategy for several important problems. CDFT offers a
degree of control over the effects of self-interaction error in
approximate XC functionals, thereby combating the tendency of
semilocal functionals to overdelocalize the density. The charge
constraints in CDFT provide a natural way to define diabatic
states for electron transfer with limited empiricism. These
constraints also define a prescription for calculating the proper-
ties of certain excited states, such as charge-transfer and low-lying
spin states, with ground-state DFT calculations. Couplings between
CDFT states can be exploited to obtain accurate adiabatic states
for systems with significant static correlation, and CDFT states
and couplings can be exploited to construct physically motivated
models of complex phenomena. Together, these features make
CDFT a versatile and practical tool for modern density func-
tional studies.

Several noteworthy limitations of CDFT were addressed in
the preceding sections. CDFT applies real-space constraints on
the density, and the constraints are defined by partitioning of the
density according to an atomic population scheme. This intro-
duces two ambiguities. First, assigning nuclei to the various
constraint regions entails applying some degree of chemical
intuition, and there may not be an obvious, unique, best choice
for this partitioning. Second, the form of the constraint potential
depends on the population scheme, and there is some arbitrari-
ness inherent in how any of these prescriptions carves up the
density. From the perspective of obtaining excited-state informa-
tion from ground state calculations, another major limitation of

Figure 48. Comparison of simulated UV�visible spectra of plastocya-
nin evaluated with TDDFT and with the MOM approach to ΔSCF.
Experimental reference spectra are shown in red. Reproduced with
permission from ref 415. Copyright 2010 Royal Society of Chemistry.

Table 14. LowestMolecular Excitation Energies (in eV) from
ROKS Calculationsa

molecule LDA BLYP BP86 FT97 expt

O2 1.06 0.97 1.01 1.08 0.97

SO 0.77 0.72 0.78 0.80 0.73

C2
+ 1.35 1.04 1.20 1.23 1.37

H2CO 3.36 3.38 3.32 3.42 3.50
aData from ref 420.
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CDFT is that it can only describe a subset (albeit an important
subset) of electronic excitations. Likewise, CDFT might not be
the right tool for modeling certain diabatic states.

We close with some thoughts about future horizons for
CDFT. Established evidence that CDFT provides a computa-
tionally efficient framework for modeling diabatic ET states
should fuel further CDFT studies of ET in solution and of charge
transport in OSCs, with the long-term goal of quantifying the
energetics and kinetics of energy conversion from excitons.
These simulations can inform the rational design of optimized
artificial photosynthetic architectures and organic electronics,
eventually advancing cheaper PV materials and brighter, more
durable OLED displays. CDFT studies of ET processes in
complex molecular architectures may also lead to improved
chemical sensors and perhaps even to novel reactivity. Regarding
the CDFT method itself, the most promising avenue for
advances concerns the electronic coupling. What is the most
accurate prescription for computing the coupling? Is there a
more rigorous formulation waiting to be uncovered? What
about derivatives of the electronic coupling? These are often
assumed to be zero or negligibly small, and they are difficult to
probe experimentally, but CDFT provides a way to quantify
them, in principle. Finally, there is ample room for more
extensive application of CDFT and CDFT-CI to a range of
important model and real-world problems: charge transport in
graphene, exciton-CT dissociation kinetics, photochemical
bleaching, proton-coupled electron transfer mechanisms,
singlet fission, and double excitations are all tempting candi-
dates for investigation with CDFT techniques. We anticipate
that experimental and theoretical work on many of these
problems—and many more we have not conceived of—would
benefit from the quantitative insights that CDFT has been
shown to deliver.
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